• An, N., J. Dou, J. Gonzalez, R. Bornstein, S. Miao, and L. Lin, 2020: An observational case study of synergies between an intense heat wave and the urban heat island in Beijing. J. Appl. Meteor. Climatol., 59, 605620, https://doi.org/10.1175/JAMC-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayotte, K., J. J. Finnigan, and M. R. Raupach, 1999: A second-order closure for neutrally stratified vegetative canopy flows. Bound.-Layer Meteor., 90, 189216, https://doi.org/10.1023/A:1001722609229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, W. G., T. R. Oke, and W. R. Rouse, 1997: The Surface Climates of Canada. McGill-Queen’s Press, 400 pp.

  • Beijing Municipal Bureau of Statistics, 2016: Report on number of buildings in Beijing. BMBS, accessed 27 November 2019, http://hgk.tjj.beijing.gov.cn/ww/MenuItemAction!queryMenu.

  • Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7, 575582, https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., 2011: Establishment of meso-met modeling case studies to evaluate the relative roles of urban dynamics and aerosols on summer thunderstorms. 18th Conf. on Planned and Inadvertent Weather Modification, Seattle, WA, Amer. Meteor. Soc., J5.2, https://ams.confex.com/ams/91Annual/recordingredirect.cgi/id/17137.

  • Bornstein, R. D., and D. S. Johnson, 1977: Urban-rural wind velocity differences. Atmos. Environ., 11, 597604, https://doi.org/10.1016/0004-6981(77)90112-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., and G. LeRoy, 1990: Urban barrier effects on convective and frontal thunderstorms. Preprints, Fourth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 120–121.

  • Bornstein, R. D., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, https://doi.org/10.1016/S1352-2310(99)00374-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R. D., P. Thunis, and G. Schayes, 1993: Simulation of urban barrier effects on polluted urban boundary layers using the three-dimensional URBMET/TVM model with urban topography. Air Pollution, Elsevier Science, 15–34.

    • Crossref
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., G. Semonin, R. T. Shealy, and R. W. Scott, 1991: Precipitation changes in fall, winter, and spring caused by St. Louis. J. Appl. Meteor., 30, 126134, https://doi.org/10.1175/1520-0450(1991)030<0126:PCIFWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, R., B. L. Bauer, and T. Smith, 1998: A mesoscale model intercomparison. Bull. Amer. Meteor. Soc., 79, 265284, https://doi.org/10.1175/1520-0477(1998)079<0265:AMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, K., and R. D. Bornstein, 2002: MM5 simulation of urban induced convective precipitation over Atlanta. Preprints, Fourth Conf. on the Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 5–6.

  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., and S. Miao, 2017: Impact of mass human migration during Chinese New Year on Beijing urban heat islands. Int. J. Climatol., 37, 41994210, https://doi.org/10.1002/joc.5061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., Y. Wang, and S. Miao, 2014: Fine spatial and temporal characteristics of humidity and wind in Beijing urban area (in Chinese with English abstract). J. Appl. Meteor. Sci., 25, 559569.

    • Search Google Scholar
    • Export Citation
  • Dou, J., Y. Wang, R. Bornstein, and S. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94105, https://doi.org/10.1175/JAMC-D-13-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fan, S., M. Chen, J. Zhong, and Z. Zheng, 2009: Performance tests and evaluations of Beijing local high-resolution rapid update cycle system (in Chinese with English abstract). Torrent. Rain Disaster, 28, 119125.

    • Search Google Scholar
    • Export Citation
  • Fan, S., H. Wang, M. Chen, and H. Gao, 2013: Study of the data assimilation of radar reflectivity with the WRF 3DVar (in Chinese with English abstract). Acta Meteor. Sin., 71, 527537.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D., and R. D. Bornstein, 1988: Case study of urban interactions with a synoptic scale cold front. Meteor. Atmos. Phys., 38, 185194, https://doi.org/10.1007/BF01054571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., D. Fu, and J. Wang, 2006: Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res., 82, 112126, https://doi.org/10.1016/j.atmosres.2005.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanization on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, https://doi.org/10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J. Y., J. J. Baik, and H. Lee, 2014: Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci., 50, 1730, https://doi.org/10.1007/s13143-014-0016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Y. Li, X. Wang, L. Chen, B. Yu, and Y. Zhang, 2019: High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modeling system. J. Cleaner Prod., 208, 373383, https://doi.org/10.1016/j.jclepro.2018.10.086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, M., S. Nghiem, A. Sorichetta, and N. Whitney, 2015: Ring of impact from the mega-urbanization of Beijing between 2000 and 2009. J. Geophys. Res. Atmos., 120, 57405756, https://doi.org/10.1002/2014JD023008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Luo, D. Zhang, and M. Wu, 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta. J. Climate, 33, 58095826, https://doi.org/10.1175/JCLI-D-19-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krayenhoff, S., and J. Voogt, 2010: Impacts of urban albedo increase on local air temperature at daily–annual time scales: Model results and synthesis of previous work. J. Appl. Meteor. Climatol., 49, 16341648, https://doi.org/10.1175/2010JAMC2356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, W., and G. Du, 2011: Analyzing urban population spatial distribution in Beijing proper (in Chinese with English abstract). J. Geo-Inf. Sci., 13, 506512, https://doi.org/10.3724/SP.J.1047.2011.00506.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. L. Baeck, S. Jessup, and J. A. Smith, 2013: Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations. J. Hydrometeor., 14, 10981118, https://doi.org/10.1175/JHM-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 13911413, https://doi.org/10.1175/BAMS-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. He, and Y. Xu, 2015: Measure of Beijing urban underlying surface heterogeneity characteristic (in Chinese with English abstract). J. Nanjing Univ. Info. Sci. Technol. Nat. Sci. Educ., 7, 444450.

    • Search Google Scholar
    • Export Citation
  • Loose, T., and R. D. Bornstein, 1977: Observations of mesoscale effects on frontal movement through an urban area. Mon. Wea. Rev., 105, 563571, https://doi.org/10.1175/1520-0493(1977)105<0563:OOMEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, J. M., R. Kronenberg, C. Bernhofer, and D. Niyogi, 2019: Urban rainfall modification: Observational climatology over Berlin, Germany. J. Geophys. Res Atmos., 124, 731746, https://doi.org/10.1029/2018JD028858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., M. Wu, F. Ren, J. Li, and W.-K. Wong, 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 87038719, https://doi.org/10.1175/JCLI-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, Q. Li, and S. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806825, https://doi.org/10.1175/2010JAMC2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, S., J. Dou, F. Chen, J. Li, and A. Li, 2012: Analysis of observations on the urban surface energy balance in Beijing. Sci. China Earth Sci., 55, 18811890, https://doi.org/10.1007/s11430-012-4411-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, C., and J. M. Shepherd, 2016: Urban precipitation: A global perspective. The Routledge Handbook of Urbanization and Global Environmental Change, K. C. Seto, W. D. Solecki, and C. A. Griffith, Eds., Routledge, 152–168.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D. T., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, https://doi.org/10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508, https://doi.org/10.1177/030913338801200401.

  • Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 527 pp.

    • Crossref
    • Export Citation
  • Pielke, R. A., Sr., 2013: Mesoscale Meteorological Modeling. 3rd ed. Academic Press, 276 pp.

    • Crossref
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, https://doi.org/10.1007/s00704-009-0142-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlunzen, K. H., and J. J. Katzfey, 2003: Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, 55A, 232246, https://doi.org/10.1034/j.1600-0870.2003.00017.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlünzen, K. H., P. Hoffmann, G. Rosenhagen, and W. Riecke, 2010: Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol., 30, 11211136, https://doi.org/10.1002/joc.1968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shem, W., and J. M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189, https://doi.org/10.1016/j.atmosres.2008.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2013: Impacts of urbanization on precipitation and storms: Physical insights and vulnerabilities. Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Academic Press, 109–125.

    • Crossref
    • Export Citation
  • Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from space borne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701, https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, L. Wang, F. Liang, Y. Kang, and X. Jiang, 2006: The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004 (in Chinese with English abstract). Chin. J. Atmos. Sci., 30, 221234.

    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, L. Lei, B. Yu, and Q. Ding, 2015: The fundamental feature of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor. Sin., 73, 609623.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., X. Li, and Z. Feng, 2010: Research on urban extension based on Shannon entropy (in Chinese with English abstract). China Popul. Resour. Environ., 20, 8892.

    • Search Google Scholar
    • Export Citation
  • Wilson, N. B., and R. H. Shaw, 1977: A higher order closure model for canopy flow. J. Appl. Meteor., 16, 11971205, https://doi.org/10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal south China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., X. Wang, X. Zeng, and L. Xu, 2000: The effect of urbanization on short duration precipitation in Beijing (in Chinese with English abstract). J. Nanjing Inst. Meteor., 23, 6872.

    • Search Google Scholar
    • Export Citation
  • Yu, M., and Y. Liu, 2015: The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmos., 120, 81328143, https://doi.org/10.1002/2015JD023336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., 2020: Rapid urbanization and more extreme rainfall events. Sci. Bull., 65, 516518, https://doi.org/10.1016/j.scib.2020.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., M. S. Jin, Y. Shou, and C. Dong, 2019: The influences of urban building complexes on the ambient flows over the Washington–Reston region. J. Appl. Meteor. Climatol., 58, 13251336, https://doi.org/10.1175/JAMC-D-19-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Miao, Y. Dai, and R. Bornstein, 2017: Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos., 122, 78517868, https://doi.org/10.1002/2017JD026614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., and X. Yang, 2015: Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing Metropolitan Area. Atmos. Res., 153, 318334, https://doi.org/10.1016/j.atmosres.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 68 68 32
Full Text Views 11 11 8
PDF Downloads 16 16 13

Observation and Simulation of a Bifurcating Thunderstorm over Beijing

View More View Less
  • 1 School of Atmospheric Sciences and Institute for Climate and Global Change Research, Nanjing University, Nanjing, China
  • 2 Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
  • 3 Department of Meteorology and Climatology, San Jose State University, San Jose, California
© Get Permissions
Restricted access

Abstract

The aim of this study was the analysis and simulation of the life cycle of a bifurcating thunderstorm that passed over Beijing, China, on 22 July 2015. Data from 150 surface weather sites and an S-band radar were used in conjunction with WRF simulations that used its multilevel Building Environment Parameterization (BEP) urbanization option. The Urban-case simulation used Beijing land-use information, and the NoUrban one replaced all urban areas by croplands. The Urban case correctly simulated both the observed weak 10-m winds over Beijing (<1.0 m s−1) and the weak 2-m urban heat island (<0.5°C). Observed radar and rain gauge data, as well as the Urban-case results, all showed precipitation bifurcation around Beijing, with maximum accumulations in convergent flow areas on either side of the city. The Urban case also reproduced the observed precipitation minima over the urban area and in a downwind rain shadow. The observations and Urban-case results both also showed bifurcated flow, even when the storm was still upwind of Beijing. The subsequent bifurcated precipitation areas thus each moved along a preexisting flow branch. Urban-case vertical sections showed downward motion in the divergence areas over the urban core and upward motions over the lateral convergence zones, both up to 6 km. Given that the NoUrban case showed none of these features, these differences demonstrate how the impact of cities can extend upward into deep local convection. Additional case-study simulations are needed to more fully understand urban storm bifurcation mechanisms in this and other storms for cities in a variety of climates.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingjing Dou, jjdou@ium.cn

Abstract

The aim of this study was the analysis and simulation of the life cycle of a bifurcating thunderstorm that passed over Beijing, China, on 22 July 2015. Data from 150 surface weather sites and an S-band radar were used in conjunction with WRF simulations that used its multilevel Building Environment Parameterization (BEP) urbanization option. The Urban-case simulation used Beijing land-use information, and the NoUrban one replaced all urban areas by croplands. The Urban case correctly simulated both the observed weak 10-m winds over Beijing (<1.0 m s−1) and the weak 2-m urban heat island (<0.5°C). Observed radar and rain gauge data, as well as the Urban-case results, all showed precipitation bifurcation around Beijing, with maximum accumulations in convergent flow areas on either side of the city. The Urban case also reproduced the observed precipitation minima over the urban area and in a downwind rain shadow. The observations and Urban-case results both also showed bifurcated flow, even when the storm was still upwind of Beijing. The subsequent bifurcated precipitation areas thus each moved along a preexisting flow branch. Urban-case vertical sections showed downward motion in the divergence areas over the urban core and upward motions over the lateral convergence zones, both up to 6 km. Given that the NoUrban case showed none of these features, these differences demonstrate how the impact of cities can extend upward into deep local convection. Additional case-study simulations are needed to more fully understand urban storm bifurcation mechanisms in this and other storms for cities in a variety of climates.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingjing Dou, jjdou@ium.cn
Save