• 3TIER, 2010: Development of regional wind resource and wind plant output datasets. National Renewable Energy Laboratory Rep. NREL/SR-550-47676, 23 pp., https://www.nrel.gov/docs/fy10osti/47676.pdf.

  • Ackermann, T., Ed., 2012: Wind Power in Power Systems. 2nd ed. John Wiley and Sons, 1049 pp.

    • Crossref
    • Export Citation
  • Aird, J. A., R. J. Barthelmie, T. J. Shepherd, and S. C. Pryor, 2020: WRF-simulated springtime low-level jets over Iowa: Implications for wind energy. J. Phys. Conf. Ser., 1618, 062023, https://doi.org/10.1088/1742-6596/1618/6/062020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akish, E., L. Bianco, I. V. Djalalova, J. M. Wilczak, J. B. Olson, J. Freedman, C. Finley, and J. Cline, 2019: Measuring the impact of additional instrumentation on the skill of numerical weather prediction models at forecasting wind ramp events during the first Wind Forecast Improvement Project (WFIP). Wind Energy, 22, 11651174, https://doi.org/10.1002/WE.2347.

    • Search Google Scholar
    • Export Citation
  • Anastasiades, G., and P. McSharry, 2013: Quantile forecasting of wind power using variability indices. Energies, 6, 662695, https://doi.org/10.3390/en6020662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AWEA, 2019: Grid Vision: The electric highway to a 21st century economy. American Wind Energy Association Rep., 80 pp., https://www.awea.org/Awea/media/Resources/Publications%20and%20Reports/White%20Papers/Grid-Vision-The-Electric-Highway-to-a-21st-Century-Economy.pdf.

  • AWEA, 2020: Wind powers America: Annual report 2019. American Wind Energy Association Rep., 14 pp.

  • Bakke, G., 2016: The Grid: The Fraying Wires between Americans and Our Energy Future. Bloomsbury Publishing, 384 pp.

  • Barthelmie, R. J., K. S. Hansen, and S. C. Pryor, 2013: Meteorological controls on wind turbine wakes. Proc. IEEE, 101, 10101019, https://doi.org/10.1109/JPROC.2012.2204029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianco, L., and Coauthors, 2019: Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2). Geosci. Model Dev., 12, 48034821, https://doi.org/10.5194/gmd-12-4803-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, L., J. Cochran, and X. Wang, 2014: Wind and solar energy curtailment: Experience and practices in the United States. National Renewable Energy Laboratory Doc., 58 pp., https://www.nrel.gov/docs/fy14osti/60983.pdf.

  • Bird, L., and Coauthors, 2016: Wind and solar energy curtailment: A review of international experience. Renewable Sustainable Energy Rev., 65, 577586, https://doi.org/10.1016/j.rser.2016.06.082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blume, S. W., 2016: Electric Power System Basics for the Nonelectrical Professional. John Wiley and Sons, 256 pp.

    • Crossref
    • Export Citation
  • Borenstein, S., and J. Bushnell, 2015: The US electricity industry after 20 years of restructuring. Annu. Rev. Econ., 7, 437463, https://doi.org/10.1146/annurev-economics-080614-115630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossavy, A., R. Girard, and G. Kariniotakis, 2013: Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy, 16, 5163, https://doi.org/10.1002/we.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodny, J., and M. Tutak, 2020: Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies, 13, 913, https://doi.org/10.3390/en13040913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brower, M., 2009: Development of eastern regional wind resource and wind plant output datasets. National Renewable Energy Laboratory Rep. NREL/SR-550-46764, 32 pp.

  • Carroll, J., A. McDonald, I. Dinwoodie, D. McMillan, M. Revie, and I. Lazakis, 2017: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy, 20, 361378, https://doi.org/10.1002/we.2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassola, F., M. Burlando, M. Antonelli, and C. F. Ratto, 2008: Optimization of the regional spatial distribution of wind power plants to minimize the variability of wind energy input into power supply systems. J. Appl. Meteor. Climatol., 47, 30993116, https://doi.org/10.1175/2008JAMC1886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collet, J., O. Féron, and P. Tankov, 2018: Optimal management of a wind power plant with storage capacity. Renewable Energy: Forecasting and Risk Management, P. Drobinski et al., Eds., Proceedings in Mathematics and Statistics, Vol. 254, Springer, 229–246.

    • Crossref
    • Export Citation
  • Collins, S., P. Deane, B. Ó. Gallachóir, S. Pfenninger, and I. Staffell, 2018: Impacts of inter-annual wind and solar variations on the European power system. Joule, 2, 20762090, https://doi.org/10.1016/j.joule.2018.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutler, N., M. Kay, K. Jacka, and T. S. Nielsen, 2007: Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT. Wind Energy, 10, 453470, https://doi.org/10.1002/we.235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., E. Hittinger, and E. Williams, 2020: Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar. Renewable Energy, 156, 634644, https://doi.org/10.1016/j.renene.2020.03.082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deetjen, T. A., J. D. Rhodes, and M. E. Webber, 2017: The impacts of wind and solar on grid flexibility requirements in the Electric Reliability Council of Texas. Energy, 123, 637654, https://doi.org/10.1016/j.energy.2017.02.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denholm, P., and T. Mai, 2019: Timescales of energy storage needed for reducing renewable energy curtailment. Renewable Energy, 130, 388399, https://doi.org/10.1016/j.renene.2018.06.079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., and Coauthors, 2020: The making of the New European Wind Atlas—Part 2: Production and evaluation. Geosci. Model Dev., 13, 50795102, https://doi.org/10.5194/gmd-13-5079-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ela, E., and J. Kemper, 2009: Wind plant ramping behavior. National Renewable Energy Laboratory Tech. Rep. NREL/TP-550-46938, 44 pp., https://doi.org/10.2172/969723.

    • Crossref
    • Export Citation
  • Giebel, G., and G. Kariniotakis, 2017: Wind power forecasting—A review of the state of the art. Renewable Energy Forecasting: From Models to Applications, Elsevier, 59–109.

    • Crossref
    • Export Citation
  • Gong, Y., C. Chung, and R. Mall, 2017: Power system operational adequacy evaluation with wind power ramp limits. IEEE Trans. Power Syst., 33, 27062716, https://doi.org/10.1109/TPWRS.2017.2764420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., R. Beerli, S. Pfenninger, I. Staffell, and H. Wernli, 2017: Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Climate Change, 7, 557562, https://doi.org/10.1038/nclimate3338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, S. D., D. Millstein, M. Bolinger, R. Wiser, and S. Jeong, 2020: How does wind project performance change with age in the United States? Joule, 4, 10041020, https://doi.org/10.1016/j.joule.2020.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holttinen, H., J. Kiviluoma, A. Estanqueiro, T. Aigner, Y.-H. Wan, and M. R. Milligan, 2010: Variability of load and net load in case of large scale distributed wind power. 10th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Farms, Stockholm, Sweden, Royal Institute of Technology, https://community.ieawind.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=bbe7e818-54a3-cde0-16c8-698595ba8391&forceDialog=0.

  • Holttinen, H., and Coauthors, 2011: Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy, 14, 179192, https://doi.org/10.1002/we.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IRC Markets Committee, 2017: Market design: Executive summary. IRC Markets Committee Doc., 12 pp., https://isorto.org/wp-content/uploads/2017/09/20170905_2017IRCMarketsCommitteeExecutiveSummaryFinal.pdf.

  • Jang, H., 2020: Market impacts of a transmission investment: Evidence from the ERCOT competitive Renewable Energy Zones Project. Energies, 13, 3199, https://doi.org/10.3390/en13123199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdier, B., 2020: Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France. Adv. Sci. Res., 17, 6377, https://doi.org/10.5194/asr-17-63-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalverla, P. C., J. B. Duncan Jr., G. J. Steeneveld, and A. A. M. Holtslag, 2019: Low-level jets over the North Sea based on ERA5 and observations: Together they do better. Wind Energy Science, 4, 193209, https://doi.org/10.5194/wes-4-193-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalverla, P. C., A. A. M. Holtslag, R. J. Ronda, and G. J. Steeneveld, 2020: Quality of wind characteristics in recent wind atlases over the North Sea. Quart. J. Roy. Meteorol. Soc., 146, 14981515, https://doi.org/10.1002/qj.3748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzenstein, W., E. Fertig, and J. Apt, 2010: The variability of interconnected wind plants. Energy Policy, 38, 44004410, https://doi.org/10.1016/j.enpol.2010.03.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keane, A., and Coauthors, 2010: Capacity value of wind power. IEEE Trans. Power Syst., 26, 564572, https://doi.org/10.1109/TPWRS.2010.2062543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiviluoma, J., and Coauthors, 2016: Variability in large-scale wind power generation. Wind Energy, 19, 16491665, https://doi.org/10.1002/we.1942.

  • Klink, K., 2002: Trends and interannual variability of wind speed distributions in Minnesota. J. Climate, 15, 33113317, https://doi.org/10.1175/1520-0442(2002)015<3311:TAIVOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lledó, L., O. Bellprat, F. J. Doblas-Reyes, and A. Soret, 2018: Investigating the effects of Pacific sea surface temperatures on the wind drought of 2015 over the United States. J. Geophys. Res. Atmos., 123, 48374849, https://doi.org/10.1029/2017JD028019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lledó, L., V. Torralba, A. Soret, J. Ramon, and F. J. Doblas-Reyes, 2019: Seasonal forecasts of wind power generation. Renewable Energy, 143, 91100, https://doi.org/10.1016/j.renene.2019.04.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumbreras, S., and A. Ramos, 2013: Offshore wind farm electrical design: A review. Wind Energy, 16, 459473, https://doi.org/10.1002/we.1498.

  • Mehrens, A. R., A. N. Hahmann, X. G. Larsén, and L. von Bremen, 2016: Correlation and coherence of mesoscale wind speeds over the sea. Quart. J. Roy. Meteor. Soc., 142, 31863194, https://doi.org/10.1002/qj.2900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milligan, M., and B. Kirby, 2008: The impact of balancing area size and ramping requirements on wind integration. Wind Eng., 32, 379398, https://doi.org/10.1260/0309-524X.32.4.379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milligan, M., B. Frew, E. Ibanez, J. Kiviluoma, H. Holttinen, and L. Soder, 2017: Capacity value assessments of wind power. Wiley Interdiscip. Rev.: Energy Environ., 6, e226, https://doi.org/10.1002/WENE.226.

    • Search Google Scholar
    • Export Citation
  • Mohandes, B., M. S. El Moursi, N. Hatziargyriou, and S. El Khatib, 2019: A review of power system flexibility with high penetration of renewables. IEEE Trans. Power Syst., 34, 31403155, https://doi.org/10.1109/TPWRS.2019.2897727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nanahara, T., M. Asari, T. Sato, K. Yamaguchi, M. Shibata, and T. Maejima, 2004: Smoothing effects of distributed wind turbines. Part 1. Coherence and smoothing effects at a wind farm. Wind Energy, 7, 6174, https://doi.org/10.1002/we.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolakakis, T., and V. Fthenakis, 2011: The optimum mix of electricity from wind-and solar-sources in conventional power systems: Evaluating the case for New York State. Energy Policy, 39, 69726980, https://doi.org/10.1016/j.enpol.2011.05.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notton, G., M.-L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, and A. Fouilloy, 2018: Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable Sustainable Energy Rev., 87, 96105, https://doi.org/10.1016/j.rser.2018.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NREL, 2008: 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply. U.S. Department of Energy Rep. DOE/GO-102008-2567, 248 pp., https://www.nrel.gov/docs/fy08osti/41869.pdf.

  • Olauson, J., 2018: ERA5: The new champion of wind power modelling? Renewable Energy, 126, 322331, https://doi.org/10.1016/j.renene.2018.03.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olauson, J., P. Edström, and J. Rydén, 2017: Wind turbine performance decline in Sweden. Wind Energy, 20, 20492053, https://doi.org/10.1002/we.2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega-Vazquez, M. A., and D. S. Kirschen, 2009: Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans. Power Syst., 24, 114124, https://doi.org/10.1109/TPWRS.2008.2004745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennock, K., 2012: Updated eastern interconnect wind power output and forecasts for ERGIS. National Renewable Energy Laboratory Rep. NREL/SR-5500-56616, 17 pp., https://doi.org/10.2172/1056126.

    • Crossref
    • Export Citation
  • Pollitt, M. G., 2012: Lessons from the history of independent system operators in the energy sector. Energy Policy, 47, 3248, https://doi.org/10.1016/j.enpol.2012.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., G. Nikulin, and C. Jones, 2012: Influence of spatial resolution on regional climate model derived wind climates. J. Geophys. Res., 117, D03117, https://doi.org/03110.01029/02011JD016822.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. Conrick, C. Miller, J. Tytell, and R. J. Barthelmie, 2014: Intense and extreme wind speeds observed by anemometer and seismic networks: An eastern US case study. J. Appl. Meteor. Climatol., 53, 24172429, https://doi.org/10.1175/JAMC-D-14-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, and R. J. Barthelmie, 2018: Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Science, 3, 651665, https://doi.org/10.5194/wes-3-651-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelme, and T. Shepherd, 2020a: 20% of US electricity from wind will have limited impacts on system efficiency and regional climate. Sci. Rep., 10, 541, https://doi.org/10.1038/s41598-019-57371-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., T. J. Shepherd, M. Bukovsky, and R. J. Barthelmie, 2020b: Assessing the stability of wind resource and operating conditions. J. Phys. Conf. Ser., 1452, 012084, https://doi.org/10.1088/1742-6596/1452/1/012084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, M. Bukovsky, L. R. Leung, and K. Sakaguchi, 2020c: Climate change impacts on wind power generation. Nat. Rev. Earth Environ., 1, 627643, https://doi.org/10.1038/s43017-020-0101-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purvins, A., A. Zubaryeva, M. Llorente, E. Tzimas, and A. Mercier, 2011: Challenges and options for a large wind power uptake by the European electricity system. Appl. Energy, 88, 14611469, https://doi.org/10.1016/j.apenergy.2010.12.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Z., Y. Pei, H. Zareipour, and N. Chen, 2019: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy, 235, 939953, https://doi.org/10.1016/j.apenergy.2018.10.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rand, J. T., L. A. Kramer, C. P. Garrity, B. D. Hoen, J. E. Diffendorfer, H. E. Hunt, and M. Spears, 2020: A continuously updated, geospatially rectified database of utility-scale wind turbines in the United States. Sci. Data, 7, 15, https://doi.org/10.1038/s41597-020-0353-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, D., B. Hingray, B. François, and J. D. Creutin, 2018: Energy droughts from variable renewable energy sources in European climates. Renewable Energy, 125, 578589, https://doi.org/10.1016/j.renene.2018.02.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roques, F., C. Hiroux, and M. Saguan, 2010: Optimal wind power deployment in Europe—A portfolio approach. Energy Policy, 38, 32453256, https://doi.org/10.1016/j.enpol.2009.07.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., and S. C. Pryor, 2014: Assessing the fidelity of AOGCM-simulated relationships between large-scale modes of climate variability and wind speeds. J. Geophys. Res. Atmos., 119, 97199734, https://doi.org/10.1002/2014JD021601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M., D. Elliott, and G. Gower, 1993: Seasonal variability of wind electric potential in the United States. Pacific Northwest Laboratory Rep. PNL-SA-22090, CONF-930726-4, 10 pp., https://www.osti.gov/servlets/purl/10178386.

  • Shaner, M. R., S. J. Davis, N. S. Lewis, and K. Caldeira, 2018: Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ. Sci., 11, 914925, https://doi.org/10.1039/C7EE03029K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach, and M. K. Hughes, 2002: The climate of the US Southwest. Climate Res., 21, 219238, https://doi.org/10.3354/cr021219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staid, A., C. VerHulst, and S. D. Guikema, 2018: A comparison of methods for assessing power output in non-uniform onshore wind farms. Wind Energy, 21, 4252, https://doi.org/10.1002/we.2143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Martin, C. M., J. K. Lundquist, and M. A. Handschy, 2015: Variability of interconnected wind plants: Correlation length and its dependence on variability time scale. Environ. Res. Lett., 10, 044004, https://doi.org/10.1088/1748-9326/10/4/044004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., and S. Basu, 2010: The WRF Model forecast-derived low-level wind shear climatology over the United States Great Plains. Energies, 3, 258276, https://doi.org/10.3390/en3020258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, https://doi.org/10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 2017: Practical Meteorology: An Algebra-Based Survey of Atmospheric Science. University of British, 940 pp.

  • Torralba, V., F. J. Doblas-Reyes, D. MacLeod, I. Christel, and M. Davis, 2017: Seasonal climate prediction: A new source of information for the management of wind energy resources. J. Appl. Meteor. Climatol., 56, 12311247, https://doi.org/10.1175/JAMC-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troccoli, A., L. Dubus, and S. E. E. Haupt, 2014: Weather Matters for Energy. Springer, 131 pp.

    • Crossref
    • Export Citation
  • U.S. Energy Information Administration, 2019: Electric power monthly with data for September 2019. U.S. Department of Energy Energy Information Administration Independent Statistics and Analysis Doc., 280 pp., https://www.eia.gov/electricity/monthly/archive/november2019.pdf.

  • Vincent, C. L., and P.-J. Trombe, 2017: Forecasting intrahourly variability of wind generation. Renewable Energy Forecasting: From Models to Applications, Elsevier, 219–233.

    • Crossref
    • Export Citation
  • Wilczak, J., and Coauthors, 2015: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 16991718, https://doi.org/10.1175/BAMS-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and Coauthors, 2019a: Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first Wind Forecast Improvement Project (WFIP). Wind Energy, 22, 932944, https://doi.org/10.1002/WE.2332.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and Coauthors, 2019b: The Second Wind Forecast Improvement Project (WFIP2): Observational field campaign. Bull. Amer. Meteor. Soc., 100, 17011723, https://doi.org/10.1175/BAMS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiser, R., and M. Bolinger, 2017: 2016 wind technologies market report. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Rep. DOE/GO-102917-5033, 94 pp., https://www.energy.gov/sites/prod/files/2017/08/f35/2016_Wind_Technologies_Market_Report_0.pdf.

    • Crossref
    • Export Citation
  • Wiser, R., and M. Bolinger, 2019: 2018 wind technologies market report. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Rep., DOE/GO-102019-5191, 103 pp., https://www.energy.gov/sites/prod/files/2019/08/f65/2018%20Wind%20Technologies%20Market%20Report%20FINAL.pdf.

  • Ziegler, M. S., J. M. Mueller, G. D. Pereira, J. Song, M. Ferrara, Y.-M. Chiang, and J. E. Trancik, 2019: Storage requirements and costs of shaping renewable energy toward grid decarbonization. Joule, 3, 21342153, https://doi.org/10.1016/j.joule.2019.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 113 113 66
Full Text Views 42 42 12
PDF Downloads 55 55 18

Variability in Wind Energy Generation across the Contiguous United States

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • 2 Sibley School for Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

ERA5 provides high-resolution, high-quality hourly wind speeds at 100 m and is a unique resource for quantifying temporal variability in likely wind-derived power production across the United States. Gross capacity factors (CF) in seven independent system operators (ISOs) are estimated using the location and rated power of each wind turbine, a simplified power curve, and ERA5 output from 1979 to 2018. Excluding the California ISO, the marginal probability of a calm (zero power production) is less than 0.1 in any ERA5 grid cell. When a calm occurs, the mean co-occurrence across wind-turbine-containing grid cells ranges from 0.38 to 0.39 for ISOs in the Midwest and central plains [Midcontinent (or Midwest) ISO (MISO), Southwest Power Pool (SPP), and the Electric Reliability Council of Texas (ERCOT) region], increasing to 0.54–0.58 for ISOs in the eastern United States [Pennsylvania–New Jersey–Maryland interconnection (PJM), New York ISO (NYISO), and New England ISO (NEISO)]. Periods with low gross CF have a median duration of ≤6 h, except in California, and are most likely during summer. Gross CF exhibit highest variance at periods of 1 day in ERCOT and SPP; on synoptic scales in MISO, NEISO, and NYISO; and on interannual time scales in PJM. This implies differences in optimal strategies for ensuring resilience of supply. Theoretical scenarios show adding wind energy capacity near existing wind farms is advantageous even in areas with high existing installed capacity (IC), while expanding into areas with lower IC is more beneficial to reducing ramps and the probability of gross CF falling below 20%. These results emphasize the benefits of large balancing areas and aggregation in reducing wind power variability and the likelihood of wind droughts.

ORCID: 0000-0003-4847-3440.

ORCID: 0000-0001-9275-0359.

ORCID: 0000-0003-0403-6046.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu

Abstract

ERA5 provides high-resolution, high-quality hourly wind speeds at 100 m and is a unique resource for quantifying temporal variability in likely wind-derived power production across the United States. Gross capacity factors (CF) in seven independent system operators (ISOs) are estimated using the location and rated power of each wind turbine, a simplified power curve, and ERA5 output from 1979 to 2018. Excluding the California ISO, the marginal probability of a calm (zero power production) is less than 0.1 in any ERA5 grid cell. When a calm occurs, the mean co-occurrence across wind-turbine-containing grid cells ranges from 0.38 to 0.39 for ISOs in the Midwest and central plains [Midcontinent (or Midwest) ISO (MISO), Southwest Power Pool (SPP), and the Electric Reliability Council of Texas (ERCOT) region], increasing to 0.54–0.58 for ISOs in the eastern United States [Pennsylvania–New Jersey–Maryland interconnection (PJM), New York ISO (NYISO), and New England ISO (NEISO)]. Periods with low gross CF have a median duration of ≤6 h, except in California, and are most likely during summer. Gross CF exhibit highest variance at periods of 1 day in ERCOT and SPP; on synoptic scales in MISO, NEISO, and NYISO; and on interannual time scales in PJM. This implies differences in optimal strategies for ensuring resilience of supply. Theoretical scenarios show adding wind energy capacity near existing wind farms is advantageous even in areas with high existing installed capacity (IC), while expanding into areas with lower IC is more beneficial to reducing ramps and the probability of gross CF falling below 20%. These results emphasize the benefits of large balancing areas and aggregation in reducing wind power variability and the likelihood of wind droughts.

ORCID: 0000-0003-4847-3440.

ORCID: 0000-0001-9275-0359.

ORCID: 0000-0003-0403-6046.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. C. Pryor, sp2279@cornell.edu
Save