• Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp., NTIS COM-73-10781, https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/COM7310781.xhtml#.

  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, J., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp., https://repository.library.noaa.gov/view/noaa/19322.

  • Gasiewski, A. J., 1993: Microwave radiative transfer in hydrometeors. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., John Wiley and Sons, 91–144.

  • Goerss, J., C. Sampson, and J. Gross, 2004: A history of western North Pacific tropical cyclone track forecast skill. Wea. Forecasting, 19, 633638, https://doi.org/10.1175/1520-0434(2004)019<0633:AHOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016: Passive microwave quantification of tropical cyclone inner-core cloud populations relative to subsequent intensity change. Mon. Wea. Rev., 144, 44614482, https://doi.org/10.1175/MWR-D-15-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., T. F. Lee, J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001: Real-time internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Amer. Meteor. Soc., 82, 567578, https://doi.org/10.1175/1520-0477(2001)082<0567:RIDOSP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heming, J. T., 2016: Tropical cyclone tracking and verification techniques for Met Office numerical weather prediction models. Meteor. Appl., 24, 18, https://doi.org/10.1002/met.1599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jelesnianski, C. P., J. Chen, and W. A. Shaffer, 1992: SLOSH: Sea, Lake, and Overland Surges from Hurricanes. NOAA Tech. Rep. NWS 48, 65 pp., https://slosh.nws.noaa.gov/slosh/pubs/SLOSH_TR48.pdf.

  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411259, https://doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., 2011: Assimilation of tropical cyclone advisory minimum sea level pressure in the NCEP Global Data Assimilation System. Wea. Forecasting, 26, 10851091, https://doi.org/10.1175/WAF-D-11-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Appl. Meteor. Climatol., 22, 14871503, https://doi.org/10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. F., F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interact., 6, https://doi.org/10.1175/1087-3562(2002)006<0001:IOTTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Marchok, H.-L. Pan, M. Bender, and S. J. Lord, 2000: Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models. NWS Tech. Procedures Bull. 472, 7 pp.

  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, https://ams.confex.com/ams/pdfpapers/37628.pdf.

  • National Hurricane Center, 2021a: Glossary of NHC Terms. Accessed 23 January 2021, https://www.nhc.noaa.gov/aboutgloss.shtml.

  • National Hurricane Center, 2021b: Update on National Hurricane Center products and services for 2017. Accessed 26 May 2021, https://www.nhc.noaa.gov/news/20170309_pa_2017SeasonChanges.pdf.

  • Neumann, C. J., M. B. Lawrence, and E. L. Caso, 1977: Monte Carlo significance testing as applied to statistical tropical cyclone models. J. Appl. Meteor., 16, 11651174, https://doi.org/10.1175/1520-0450(1977)016<1165:MCSTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Office of the Federal Coordinator of Meteorology, 2019: National Hurricane Operations Plan. NOAA Tech. Memo. FCM-P12-2019, 176 pp., https://www.ofcm.gov/publications/nhop/fcm-p12-2019.pdf.

  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and R. E. Hart, 2015: An investigation of center-finding techniques for tropical cyclones in mesoscale models. J. Appl. Meteor. Climatol., 54, 825846, https://doi.org/10.1175/JAMC-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and et al. , 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation, August 2015—HWRF v3.7a. NCAR Developmental Testbed Center, 123 pp., http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.

  • Taylor, A., and B. Glahn, 2008: Probabilistic guidance for hurricane storm surge. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 7.4, https://ams.confex.com/ams/pdfpapers/132793.pdf.

  • Tong, M., and et al. , 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, https://doi.org/10.1175/WAF-D-11-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trahan, S., and L. Sparling, 2012: An analysis of NCEP tropical cyclone vitals and potential effects on forecasting models. Wea. Forecasting, 27, 744756, https://doi.org/10.1175/WAF-D-11-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsutsui, J.-I., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 4565, https://doi.org/10.2151/jmsj.80.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsutsui, J.-I., and A. Kasahara, 1996: Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J. Geophys. Res., 101, 15 01315 032, https://doi.org/10.1029/95JD03774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Grijn, G., 2002: Tropical cyclone forecasting at ECMWF: New products and validation. ECMWF Tech. Memo. 386, 15 pp., https://doi.org/10.21957/c8525o38f.

    • Crossref
    • Export Citation
  • Vitart, F., and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212537, https://doi.org/10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745760, https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., 1994: A technique for detecting a tropical cyclone center using a Doppler radar. J. Atmos. Oceanic Technol., 11, 12071216, https://doi.org/10.1175/1520-0426(1994)011<1207:ATFDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 41 41 41
Full Text Views 19 19 19
PDF Downloads 22 22 22

Important Factors in the Tracking of Tropical Cyclones in Operational Models

View More View Less
  • 1 a NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Multiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center fixing most variables and a separate scheme used for center fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015–17 hurricane seasons in the Atlantic and eastern Pacific basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecasting Model (HWRF). A configuration that tracks only 850-mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of 11 parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the 11 parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850-mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Marchok, timothy.marchok@noaa.gov

Abstract

Multiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center fixing most variables and a separate scheme used for center fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015–17 hurricane seasons in the Atlantic and eastern Pacific basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecasting Model (HWRF). A configuration that tracks only 850-mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of 11 parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the 11 parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850-mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy Marchok, timothy.marchok@noaa.gov
Save