• Aguilar, E., and et al. , 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, https://doi.org/10.1029/2005JD006119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Q., J. Yang, Y. Liu, G. Wu, and B. Wang, 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138, 23752384, https://doi.org/10.1175/2009MWR2950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbson, B. B., and J. P. Palutikof, 2002: The evolution of extreme temperatures in the central England temperature record. Geophys. Res. Lett., 29, 21632166, https://doi.org/10.1029/2002GL015964.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., D. S. Arndt, and M. O. Baringer, 2011: State of the Climate in 2010. Bull. Amer. Meteor. Soc., 92, S1S236, https://doi.org/10.1175/1520-0477-92.6.S1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., X. Zhang, L. A. Vincent, and W. D. Hogg, 2001: Characteristics of daily extreme temperatures over Canada. J. Climate, 14, 19591976, https://doi.org/10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yang, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and M. Barlow, 2005: The NAO, the AO and global warming: How closely related? J. Climate, 18, 44984513, https://doi.org/10.1175/JCLI3530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, https://doi.org/10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 14 00714 014, https://doi.org/10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and R. J. Allen, 2002: Trends in twentieth-century temperature extremes across the United States. J. Climate, 15, 31883205, https://doi.org/10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian High and its relation to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, https://doi.org/10.1007/BF01026822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and T. N. Krishnamurti, 1987: Heat budget of Siberian high and winter monsoon. Mon. Wea. Rev., 115, 24282449, https://doi.org/10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, Y. Song, and J. Zhang, 2008: The unprecedented freezing disaster in January 2008 in southern China and its possible association with the global warming. J. Meteor. Res., 22, 538558.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, https://doi.org/10.1029/2009GL037810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Kenawy, A. M., and et al. , 2019: Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmos. Res., 226, 219239, https://doi.org/10.1016/j.atmosres.2019.04.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Influence of the atmospheric circulation on the temperature over the Northern Hemisphere. Geogr. Res., 18, 3138.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and C. H. Ho, 2002: The Siberian high and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72, 19, https://doi.org/10.1007/s007040200008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, 245255, https://doi.org/10.1029/2011GL048762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heino, R., and et al. , 1999: Progress in the study of climate extremes in northern and central Europe. Climatic Change, 42, 151181, https://doi.org/10.1023/A:1005420400462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp., https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over East Asia in associated with Arctic Oscillation. Geophys. Res. Lett., 32, 14 70414 718, https://doi.org/10.1029/2005GL023024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R., 2009: What happened to global warming? Scientists say just wait a bit. Science, 326, 2829, https://doi.org/10.1126/science.326_28a.

  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., L. Zhang, Y. Wu, and M. Feng, 2010: Circulation characteristic of East Asian winter monsoon of extremely low temperature and snow-ice weather in southern China and its correlation with El Niño/La Niña events. Torrential Rain Disasters, 29, 142147.

    • Search Google Scholar
    • Export Citation
  • Li, C., Q. Y. Zhang, L. R. Ji, and J. B. Pen, 2012: Interannual variations of the blocking high over the Ural Mountains and its association with the AO/NAO in boreal winter. Acta Meteor. Sin., 26, 163175, https://doi.org/10.1007/s13351-012-0203-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., 2014: Quantile trends in temperature extremes in China. Atmos. Ocean. Sci. Lett., 7, 304308, https://doi.org/10.1080/16742834.2014.11447180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Yao, A. Dai, I. Simmonds, and L. Zhong, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 35693587, https://doi.org/10.1175/JCLI-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S. M., and C. W. Zhu, 2019: Extreme cold wave over East Asia in January 2016: A possible response to the large internal atmospheric variability induced by Arctic warming. J. Climate, 32, 12031216, https://doi.org/10.1175/JCLI-D-18-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S. M., C. W. Zhu, B. Q. Liu, T. J. Zhou, Y. H. Ding, and Y. J. Orsolini, 2018: Polarized response of East Asian winter temperature extremes in the era of Arctic warming. J. Climate, 31, 55435557, https://doi.org/10.1175/JCLI-D-17-0463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and et al. , 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol., 21, 269284, https://doi.org/10.1002/joc.610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling the controversies about the “global warming hiatus.” Nature, 545, 4147, https://doi.org/10.1038/nature22315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., K. Nishii, L. Wang, Y. J. Orsolini, and K. Takaya, 2016: Cold-air outbreaks over East Asia associated with blocking highs: Mechanisms and their interaction with the polar stratosphere. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. Li et al., Ed., Cambridge University Press, 225–235.

    • Crossref
    • Export Citation
  • Nogaj, M., P. Yiou, and S. Parey, 2006: Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys. Res. Lett., 33, L10801, https://doi.org/10.1029/2005GL024251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, https://doi.org/10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, https://doi.org/10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., 2019: Ural blockings as driver of early-winter stratospheric warmings. Geophys. Res. Lett., 46, 54605468, https://doi.org/10.1029/2019GL082097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and et al. , 2002: Recent changes in climate extremes in the Caribbean region. J. Geophys. Res., 107, 4601, https://doi.org/10.1029/2002JD002251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., P. A. Stott, and S. Herring, 2012: Explaining Extreme Events of 2011 from a Climate Perspective. Bull. Amer. Meteor. Soc., 93, 10411067, https://doi.org/10.1175/BAMS-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, N., and et al. , 1999: Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Climatic Change, 42, 182202, https://doi.org/10.1023/A:1005472418209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qain, W., and X. Lin, 2004: Regional trends in recent temperature indices in China. Meteor. Atmos. Phys., 27, 119134, https://doi.org/10.3354/cr027119.

    • Search Google Scholar
    • Export Citation
  • Ren, G., Y. Ding, and G. Tang, 2017: An overview of mainland China temperature change research. J. Meteor. Res., 31, 316, https://doi.org/10.1007/s13351-017-6195-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Climatic Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966-2012. Environ. Res. Lett., 10, 054020, https://doi.org/10.1088/1748-9326/10/5/054020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, R. S., 2019: Spatial patterns of trends in seasonal extreme temperatures in India during 1980-2010. Wea. Climate Extremes, 24, 100203, https://doi.org/10.1016/j.wace.2019.100203.

    • Search Google Scholar
    • Export Citation
  • Shi, J., L. L. Cui, Y. Ma, H. D. Du, and K. M. Wen, 2018: Trends in temperature extremes and their association with circulation patterns in China during 1961-2015. Atmos. Res., 212, 259272, https://doi.org/10.1016/j.atmosres.2018.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452455, https://doi.org/10.1038/20905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • University of East Anglia Climatic Research Unit, I. C. Harris, P. D. Jones, and T. Osborn, 2020: CRU TS4.04: Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2019). Centre for Environmental Data Analysis, accessed 16 April 2020, https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9.

  • Vincent, L. A., and E. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193, https://doi.org/10.3137/ao.440205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, https://doi.org/10.1126/science.343.6172.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Liu, and S. K. Lee, 2010: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168, https://doi.org/10.1002/asl.278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and et al. , 2018: Trends in extreme temperature indices in Huang-Huai-Hai River Basin of China during 1961–2014. Theor. Appl. Climatol., 134, 5165, https://doi.org/10.1007/s00704-017-2252-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Y. Ding, Q. Zhang, and Y. Song, 2012: Changing trends of daily temperature extremes with different intensities in China. Acta Meteor. Sin., 26, 399409, https://doi.org/10.1007/s13351-012-0401-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., and X. Li, 2015: Recent trends in daily temperature extremes over northeastern China (1960–2011). Quat. Int., 380–381, 3548, https://doi.org/10.1016/j.quaint.2014.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and X. Pan, 2003: Trends in temperature extremes during 1951-1999 in China. Geophys. Res. Lett., 30, 19131916, https://doi.org/10.1029/2003GL018004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., and et al. , 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res., 110, D22104, https://doi.org/10.1029/2005JD006181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. D., C. Lu, and Z. Guan, 2012: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ. Res. Lett., 7, 044044, https://doi.org/10.1088/1748-9326/7/4/044044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of East Asian winter monsoon: Result from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., Z. Wang, and Y. Shi, 2018: Historical and future changes of snowfall events in China under a warming background. J. Climate, 31, 58735889, https://doi.org/10.1175/JCLI-D-17-0428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 107 107 102
Full Text Views 30 30 28
PDF Downloads 35 35 33

Factors Responsible for the Increase of Winter Low Temperature Extremes from the Mid-1990s to the Early 2010s in Northern China

View More View Less
  • 1 a Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It is argued that the occurrence of cold events decreases under the background of global warming. However, from the mid-1990s to the early 2010s, northern China experienced a period of increasing occurrence of low temperature extremes (LTE). Factors responsible for this increase of LTE are investigated in this analysis. The results show that the interdecadal variation of the winter mean temperature over mid- and high-latitude Eurasia acts as an important thermal background. It is characterized by two dominant modes, the “consistent cooling” pattern and the “warm high-latitude Eurasia and cold midlatitude Eurasia” pattern, from the mid-1990s to the early 2010s. The two patterns jointly provide a cooling background for the increase of LTE in northern China. Meanwhile, though the interdecadal variation of the Arctic Oscillation (AO), Ural blocking (UB), and Siberian high (SH) are all highly correlated with the occurrence of LTE in northern China, the AO is found to play a dominant role. On one hand, the AO directly affects the occurrence of LTE because of its dynamic structure; on the other hand, it takes an indirect effect by affecting the intensity of UB and SH. Further analyses show that the winter temperature in mid- and high-latitude Eurasia and the AO are independent factors that influence the increase of LTE in northern China from the mid-1990s to the early 2010s.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Zhang, zhq62@cma.gov.cn

Abstract

It is argued that the occurrence of cold events decreases under the background of global warming. However, from the mid-1990s to the early 2010s, northern China experienced a period of increasing occurrence of low temperature extremes (LTE). Factors responsible for this increase of LTE are investigated in this analysis. The results show that the interdecadal variation of the winter mean temperature over mid- and high-latitude Eurasia acts as an important thermal background. It is characterized by two dominant modes, the “consistent cooling” pattern and the “warm high-latitude Eurasia and cold midlatitude Eurasia” pattern, from the mid-1990s to the early 2010s. The two patterns jointly provide a cooling background for the increase of LTE in northern China. Meanwhile, though the interdecadal variation of the Arctic Oscillation (AO), Ural blocking (UB), and Siberian high (SH) are all highly correlated with the occurrence of LTE in northern China, the AO is found to play a dominant role. On one hand, the AO directly affects the occurrence of LTE because of its dynamic structure; on the other hand, it takes an indirect effect by affecting the intensity of UB and SH. Further analyses show that the winter temperature in mid- and high-latitude Eurasia and the AO are independent factors that influence the increase of LTE in northern China from the mid-1990s to the early 2010s.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Zhang, zhq62@cma.gov.cn
Save