Spatial Correlation of Beam-Filling Error in Microwave Rain-Rate Retrievals

Gerald R. North Climate System Research Program College of Geosciences and Maritime Studies, Texas A&M University, College Station, Texas

Search for other papers by Gerald R. North in
Current site
Google Scholar
PubMed
Close
and
Ilya Polyak Climate System Research Program College of Geosciences and Maritime Studies, Texas A&M University, College Station, Texas

Search for other papers by Ilya Polyak in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this paper the authors consider the possibility of correlations between the random part of the so-called beam-filling error between neighboring fields of view in the microwave retrieval of rain rate over oceans. The study is based upon the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) rain-rate dataset, and it is found that there is a correlation of between 0.35 and 0.50 between the errors in adjacent rainy fields of view. The net effect of this correlation is reducing the number of statistically independent terms accumulated in forming area and time averages of rain-rate estimates. In GATE-like rain areas, this reduction can be of the order of a factor of 3, making accumulated standard error percentages increase by a factor of the order of √3. For the Tropical Rainfall Measuring Mission using the microwave radiometer alone. this could increase the accumulated random part of the beam-filling error for month-long 5°×5° boxes from about 1.2% to 2%. The effect is larger for less rainy areas away from the equatorial zone.

Abstract

In this paper the authors consider the possibility of correlations between the random part of the so-called beam-filling error between neighboring fields of view in the microwave retrieval of rain rate over oceans. The study is based upon the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) rain-rate dataset, and it is found that there is a correlation of between 0.35 and 0.50 between the errors in adjacent rainy fields of view. The net effect of this correlation is reducing the number of statistically independent terms accumulated in forming area and time averages of rain-rate estimates. In GATE-like rain areas, this reduction can be of the order of a factor of 3, making accumulated standard error percentages increase by a factor of the order of √3. For the Tropical Rainfall Measuring Mission using the microwave radiometer alone. this could increase the accumulated random part of the beam-filling error for month-long 5°×5° boxes from about 1.2% to 2%. The effect is larger for less rainy areas away from the equatorial zone.

Save