Applications of Kalman Filtering to Derive Water Vapor Profiles from Raman Lidar and Microwave Radiometers

Y. Han University of Colorado/Cooperative Institute for Research in Environmental Sciences and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Y. Han in
Current site
Google Scholar
PubMed
Close
,
E. R. Westwater University of Colorado/Cooperative Institute for Research in Environmental Sciences and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by E. R. Westwater in
Current site
Google Scholar
PubMed
Close
, and
R. A. Ferrare Hughes-STX Corporation, Lanham, Maryland

Search for other papers by R. A. Ferrare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A two-stage retrieval technique is presented for deriving water vapor profiles from data provided by a Raman lidar, a microwave radiometer, a radio acoustic sounding system, and surface in situ instruments. In the first stage, a Kalman filtering algorithm is applied to derive water vapor profiles using surface in situ and current and past Raman measurements. In the second stage, a statistical inversion technique is applied to combine the Kalman retrieval with radiometric and climatological data. This retrieval method is tested using data collected during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II experiment. The method is demonstrated to provide accurate profiles at altitudes above which the Raman lidar technique is limited.

Corresponding author address: Yong Han, NOAA/ERL/ETL, 325 Broadway, Boulder, CO 80303.

Email: yhan@etl.noaa.gov

Abstract

A two-stage retrieval technique is presented for deriving water vapor profiles from data provided by a Raman lidar, a microwave radiometer, a radio acoustic sounding system, and surface in situ instruments. In the first stage, a Kalman filtering algorithm is applied to derive water vapor profiles using surface in situ and current and past Raman measurements. In the second stage, a statistical inversion technique is applied to combine the Kalman retrieval with radiometric and climatological data. This retrieval method is tested using data collected during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II experiment. The method is demonstrated to provide accurate profiles at altitudes above which the Raman lidar technique is limited.

Corresponding author address: Yong Han, NOAA/ERL/ETL, 325 Broadway, Boulder, CO 80303.

Email: yhan@etl.noaa.gov

Save
  • Basili, P., P. Ciotti, and D. Solimini, 1981: Inversion of ground-based radiometric data by Kalman filtering. Radio Sci.,16, 83–91.

    • Crossref
    • Export Citation
  • Decker, M. T., and J. A. Schroeder, 1991: Calibration of ground-based microwave radiometers for atmospheric remote sensing. NOAA Tech. Memo. ERL WPL-197, 16 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • ———, E. R. Westwater, and F. O. Guriaud, 1978: Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles. J. Appl. Meteor.,17, 89–92.

    • Crossref
    • Export Citation
  • England, M. N., R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark, 1992: Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar. J. Geophys. Res.,97, 899–916.

    • Crossref
    • Export Citation
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, and K. D. Evans, 1992: Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991. Geophys. Res. Lett.,19, 1599–1602.

    • Crossref
    • Export Citation
  • ———, ———, ———, ———, F. J. Schmidlin, and D. O’C. Starr, 1995: A comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol.,12, 1178–1195.

    • Crossref
    • Export Citation
  • Gelb, A., 1988: Applied Optimal Estimation. The MIT Press, 374 pp.

  • Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors. J. Atmos. Oceanic Technol.,12, 1050–1059.

    • Crossref
    • Export Citation
  • ———, J. B. Snider, E. R. Westwater, S. H. Melfi, and R. A. Ferrare, 1994: Observations of water vapor by ground-based microwave radiometers and Raman lidar. J. Geophys. Res.,99, 18 695–18 702.

  • Kaminski, P. G., A. E. Bryson, and S. F. Schmidt, 1971: Discrete square root filtering: A survey of current techniques. IEEE Trans. Autom. Control,AC-16, 727–736.

    • Crossref
    • Export Citation
  • Ledsham, W. H., and D. H. Staelin, 1978: An extended Kalman–Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder. J. Appl. Meteor.,17, 1023–1033.

    • Crossref
    • Export Citation
  • Martner, B. E., and Coauthors, 1993: An evaluation of wind profiler, RASS, and microwave radiometer performance. Bull Amer. Meteor. Soc.,74, 599–613.

    • Crossref
    • Export Citation
  • Melfi, S. H., and D. H. Whiteman, 1985: Observation of lower atmospheric moisture structure and its evolution using a Raman lidar. Bull. Amer. Meteor. Soc.,66, 1288–1292.

    • Crossref
    • Export Citation
  • ———, ———, and R. A. Ferrare, 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor.,28, 789–806.

    • Crossref
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys.,14, 609–624.

    • Crossref
    • Export Citation
  • Ruf, C. S., and C. T. Swift, 1988: Atmospheric profiling of water vapor density with a 20.5–23.5 GHz autocorrelation radiometer. J. Atmos. Oceanic Technol.,5, 539–546.

    • Crossref
    • Export Citation
  • Skoog, B. G., J. I. H. Askne, and G. Elgered, 1982: Experimental determination of water vapor profiles from ground-based radiometer measurements at 21.0 and 31.4 GHz. J. Appl. Meteor.,21, 394–400.

  • Stankov, B. B., B. E. Martner, and M. K. Politovich, 1995: Moisture profiling of the cloudy winter atmosphere using combined remote sensors. J. Atmos. Oceanic Technol.,12, 488–510.

    • Crossref
    • Export Citation
  • Strang, G., 1988: Linear Algebra and Its Applications. Academic, 528 pp.

  • Wang, J. R., and Coauthors, 1983: Profiling atmospheric water vapor by microwave radiometry. J. Climate Appl. Meteor.,22, 779–788.

    • Crossref
    • Export Citation
  • Westwater, E. R., 1978: The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry. Radio Sci.,13, 677–685.

    • Crossref
    • Export Citation
  • ———, M. T. Decker, A. Zachs, and K. S. Gage, 1983: Ground-based remote sensing of temperature profiles by a combination of microwave radiometry and radar. J. Climate Appl. Meteor.,22, 126–133.

    • Crossref
    • Export Citation
  • Whiteman, D. N., S. H. Melfi, and R. A. Ferrare, 1992: Raman lidar system for the measurement of water vapor and aerosols in earth’s atmosphere. Appl. Opt.,31, 3068–3082.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 175 9
PDF Downloads 90 28 1