Weather Classification Using Passive Acoustic Drifters

Jeffrey A. Nystuen Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Jeffrey A. Nystuen in
Current site
Google Scholar
PubMed
Close
and
Harry D. Selsor Tactical Oceanography Warfare Support Program Office, Naval Research Laboratory—Detachment, Stennis Space Center, Mississippi

Search for other papers by Harry D. Selsor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Weather observations are needed in remote oceanic regions to support numerical weather forecast models, to provide surface truth for satellite sensors, and to help understand global weather patterns. An acoustic mini-drifting buoy using no moving parts has been designed to meet operational naval demands for real-time monitoring of upper-ocean air–sea interface processes. This buoy is an air-deployable, standard sonobuoy-sized buoy that uses an Argos satellite link to transmit data to users. Interpretation of the ambient sound field allows classification of weather into five categories: wind, wind and drizzle, rain, high seas, and shipping contaminated. Quantitative estimates of wind speed are shown to be in agreement with the Special Sensor Microwave/Imager satellite sensor. Rainfall detection is confirmed and rainfall rate quantified using an acoustic rainfall-rate algorithm. Atmospheric pressure, air and sea temperature, and ambient sound levels are measured directly.

Corresponding author address: Dr. Jeffrey A. Nystuen, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105.

Email: nystuen@apl.washington.edu

Abstract

Weather observations are needed in remote oceanic regions to support numerical weather forecast models, to provide surface truth for satellite sensors, and to help understand global weather patterns. An acoustic mini-drifting buoy using no moving parts has been designed to meet operational naval demands for real-time monitoring of upper-ocean air–sea interface processes. This buoy is an air-deployable, standard sonobuoy-sized buoy that uses an Argos satellite link to transmit data to users. Interpretation of the ambient sound field allows classification of weather into five categories: wind, wind and drizzle, rain, high seas, and shipping contaminated. Quantitative estimates of wind speed are shown to be in agreement with the Special Sensor Microwave/Imager satellite sensor. Rainfall detection is confirmed and rainfall rate quantified using an acoustic rainfall-rate algorithm. Atmospheric pressure, air and sea temperature, and ambient sound levels are measured directly.

Corresponding author address: Dr. Jeffrey A. Nystuen, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105.

Email: nystuen@apl.washington.edu

Save
  • Dailey, C. H., 1991: Analysis of wind and rainfall measurements from acoustic drifters. M.S. thesis, Dept. of Oceanography, Naval Postgraduate School, 109 pp. [Available from Superintendent, Code 043, Naval Postgraduate School, Monterey, CA 93943-5000 or from Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.].

  • Evans, D. L., D. R. Watts, D. Halpern, and S. Bourassa, 1984: Oceanic winds measured from the seafloor. J. Geophys. Res.,89, 3457–3461.

    • Crossref
    • Export Citation
  • Farmer, D. M., and D. D. Lemon, 1984: The influence of bubbles on ambient noise in the ocean at high wind speeds. J. Phys. Oceanogr.,14, 1762–1778.

    • Crossref
    • Export Citation
  • ———, and S. Vagle, 1988: On the determination of breaking wave distributions using ambient sound. J. Geophys. Res.,93, 3591–3600.

    • Crossref
    • Export Citation
  • Franz, G., 1959: Splashes as sources of sound in liquids. J. Acoust. Soc. Amer.,31, 1080–1096.

    • Crossref
    • Export Citation
  • Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res.,94, 14 547–14 555.

    • Crossref
    • Export Citation
  • Heindsman, T. E., R. H. Smith, and A. D. Arneson, 1955: Effect of rain upon underwater noise levels. J. Acoust. Soc. Amer.,27, 378–379.

    • Crossref
    • Export Citation
  • Knudsen, V. O., R. S. Alford, and J. W. Emling, 1948: Underwater ambient noise. J. Mar. Res.,1, 410–429.

  • Lemon, D. D., D. M. Farmer, and D. R. Watts, 1984: Acoustic measurements of wind speed and precipitation over a continental shelf. J. Geophys. Res.,89, 3462–3472.

    • Crossref
    • Export Citation
  • Loewen, M. R., and W. K. Melville, 1994: An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Amer.,95, 1329–1343.

    • Crossref
    • Export Citation
  • McCormick, M. J., R. L. Pickett, and G. S. Miller, 1990: A field evaluation of new satellite-tracked buoys: A LORAN-C position recording and a sonobuoy type drifter. Marine Tech. Soc. J.,25, 29–33.

  • Medwin, H., and M. M. Beaky, 1989: Bubble sources of the Knudsen sea noise spectra. J. Acoust. Soc. Amer.,86, 1124–1130.

    • Crossref
    • Export Citation
  • ———, J. A. Nystuen, P. W. Jacobus, D. E. Snyder, and L. H. Ostwald, 1992: The anatomy of underwater rain noise. J. Acoust. Soc. Amer.,92, 1613–1623.

    • Crossref
    • Export Citation
  • Nystuen, J. A., 1993: An explanation of the sound generated by light rain in the presence of wind. Natural Physical Sources of Underwater Sound, B. R. Kerman, Ed., Kluwer Academic Publishers, 659–668.

    • Crossref
    • Export Citation
  • ———, 1996: Acoustical rainfall analysis: Rainfall drop size distribution using the underwater sound field. J. Atmos. Oceanic Technol.,13, 74–84.

    • Crossref
    • Export Citation
  • ———, and D. M. Farmer, 1987: The influence of wind of the underwater sound generated by light rain. J. Acoust. Soc. Amer.,82, 270–274.

    • Crossref
    • Export Citation
  • ———, and ———, 1989: Precipitation in the Canadian Atlantic Storms Program: Measurements of the acoustic signature. Atmos.–Ocean,27, 237–257.

    • Crossref
    • Export Citation
  • ———, and H. Medwin, 1995: Underwater sound generated by rainfall: Secondary splashes of aerosols. J. Acoust. Soc. Amer.,97, 1606–1613.

    • Crossref
    • Export Citation
  • ———, C. C. McGlothin, and M. S. Cook, 1993: The underwater sound generated by heavy precipitation. J. Acoust. Soc. Amer.,93, 3169–3177.

    • Crossref
    • Export Citation
  • Pumphrey, H. C., L. A. Crum, and L. Bjorno, 1989: Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Amer.,85, 1518–1526.

    • Crossref
    • Export Citation
  • Scrimger, J. A., D. J. Evans, G. A. McBean, D. M. Farmer, and B. R. Kerman, 1987: Underwater noise due to rain, hail and snow. J. Acoust. Soc. Amer.,81, 79–86.

    • Crossref
    • Export Citation
  • Selsor, H. D., 1993: Data from the sea: Navy Drifting Buoy Program. Sea Technol.,34, 53–58.

  • Shaw, P. T., D. R. Watts, and H. T. Rossby, 1978: On the estimation of oceanic wind speed and stress from ambient noise measurements. Deep-Sea Res.,25, 1225–1233.

    • Crossref
    • Export Citation
  • Vagle, S., W. G. Large, and D. M. Farmer, 1990: An evaluation of the WOTAN technique for inferring oceanic winds from underwater sound. J. Atmos. Oceanic Technol.,7, 576–595.

    • Crossref
    • Export Citation
  • Wenz, G. M., 1962: Acoustic ambient noise in the oceans: Spectra and sources. J. Acoust. Soc. Amer.,34, 1936–1956.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 92 9
PDF Downloads 237 57 5