• Bilbro, J. W., and W. W. Vaughan, 1978: Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system. Bull. Amer. Meteor. Soc.,59, 1095–1100.

    • Crossref
    • Export Citation
  • ——, G. Ficht, D. Fitzjarrald, M. Krause, and R. Lee, 1984: Airborne Doppler lidar wind field measurements. Bull. Amer. Meteor. Soc.,65, 348–359.

    • Crossref
    • Export Citation
  • Chong, M., and J. Testud, 1983: Three-dimensional wind field analysis from dual Doppler radar data. Part III: The boundary condition: An optimum determination based on a variational concept. J. Climate Appl. Meteor.,22, 1227–1241.

  • ——, and C. Campos, 1996: Extended overdetermined dual-Doppler formalism in synthesizing airborne Doppler radar data. J. Atmos. Oceanic Technol.,13, 581–597.

    • Crossref
    • Export Citation
  • ——, J. Testud, and F. Roux, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part II: Minimizing the error due to temporal variation. J. Climate Appl. Meteor.,22, 1216–1226.

  • Cressman, G. W., 1959: An operational objective analysis system. Mon. Wea. Rev.,87, 367–374.

    • Crossref
    • Export Citation
  • Dabas, A., and D. Oh, 1993: System simulation. WIND Phase B: Final Rep. 1, 92 pp. [Available from Deutsche Forshungsanstafft für Luft und Raumfahrt, Institut für Opto-Elektronik, Oberpfaffenhoffen, Germany.].

  • Dongarra, J. J., J. R. Bunch, C. B. Moller, and G. W. Stewart, 1979: LINPACK Users’ Guide. SIAM, 367 pp.

    • Crossref
    • Export Citation
  • Flamant, P. H., and Coauthors, 1992: WIND: An airborne Doppler lidar for atmospheric applications developed in French–German cooperation. Proc. Specialty Meeting on Airborne Radars and Lidars, Toulouse, France, Météo-France, INSU, CNES, 89–94.

  • Hall, F. F., R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. H. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt.,23, 2503–2506.

    • Crossref
    • Export Citation
  • Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE,84, 181–203.

    • Crossref
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci.,51, 2664–2682.

    • Crossref
    • Export Citation
  • Ljung, L., 1987: System Identification, Theory for the User. Prentice Hall, 519 pp.

  • Post, M. J., and R. E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Opt.,29, 4145–4158.

    • Crossref
    • Export Citation
  • Qiu, C. J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol.,9, 588–598.

    • Crossref
    • Export Citation
  • Ray, P. S., C. L. Ziegler, and W. Bumgarner, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev.,108, 1607–1625.

    • Crossref
    • Export Citation
  • Rothermel, J., C. Kessinger, and D. L. Davis, 1985: Dual-Doppler lidar measurement of wind in the JAWSexperiment. J. Atmos. Oceanic Technol.,2, 138–147.

    • Crossref
    • Export Citation
  • ——, R. M. Hardesty, and R. T. Menzies, 1995: Airborne scanning pulsed coherent Doppler laser radar for atmospheric measurement and satellite Doppler lidar simulation. Proc. 8th Coherent Laser Radar Conf., 1995 Technical Digest Series, Vol. 19, Keystone, CO, Optical Society of America, 134–137.

  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci.,52, 1265–1287.

    • Crossref
    • Export Citation
  • Testud, J., and M. Chong, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part I: Filtering, interpolating, and differentiating the raw data. J. Climate Appl. Meteor.,22, 1204–1215.

  • Xu, Q., C. J. Qiu, and J. X. Yu, 1994: Adjoint-method retrievals of low-attitude wind fields from single-Doppler wind data. J. Atmos. Oceanic Technol.,11, 579–585.

    • Crossref
    • Export Citation
  • ——, ——, H. D. Gu, and J. X. Yu, 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev.,123, 1822–1833.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 0
PDF Downloads 4 4 0

Variational Analysis for Airborne Conically Scanned Doppler Lidar to Retrieve Mesoscale Wind Fields

View More View Less
  • 1 Météo-France, Centre National de Recherches Météorologiques, Groupe de Météorologie Expérimentale et Instrumentale, Toulouse, France
  • | 2 Centre National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An airborne pulsed Doppler lidar implementing a downlooking conical scan rotating around the vertical axis is under development. The information contained in the measured radial velocities is studied to assess the capacity to retrieve the 3D wind field at mesoscale. First, in the frame of a variational analysis, it is shown that the observations cannot resolve horizontal scales shorter than approximately 5 km. Then, constraints of mass conservation and regularity as well as various boundary conditions are added to improve the resolution. The various constraints are tested on synthetic data. Further, a full analysis scheme is proposed that combines a preanalysis at low resolution followed by a finer resolution analysis. The achievable performances are discussed as well as the main limitations.

Corresponding author address: Dr. Alain Dabas, Météo-France, CNRM/GMEI, 42 Avenue Gustave Coriolis, 31057 Toulouse, Cedex 1 France.

Email: alain.dabas@meteo.fr

Abstract

An airborne pulsed Doppler lidar implementing a downlooking conical scan rotating around the vertical axis is under development. The information contained in the measured radial velocities is studied to assess the capacity to retrieve the 3D wind field at mesoscale. First, in the frame of a variational analysis, it is shown that the observations cannot resolve horizontal scales shorter than approximately 5 km. Then, constraints of mass conservation and regularity as well as various boundary conditions are added to improve the resolution. The various constraints are tested on synthetic data. Further, a full analysis scheme is proposed that combines a preanalysis at low resolution followed by a finer resolution analysis. The achievable performances are discussed as well as the main limitations.

Corresponding author address: Dr. Alain Dabas, Météo-France, CNRM/GMEI, 42 Avenue Gustave Coriolis, 31057 Toulouse, Cedex 1 France.

Email: alain.dabas@meteo.fr

Save