• Angevine, W. M., S. K. Avery, W. L. Ecklund, and D. A. Carter, 1993: Fluxes of heat and momentum measured with a boundary-layer wind profiler radar–radio acoustic sounding system. J. Appl. Meteor.,32, 73–80.

    • Crossref
    • Export Citation
  • ——, R. J. Doviak, and Z. Sorbjan, 1994: Remote sensing of vertical velocity variance and surface heat flux in a convective boundary layer. J. Appl. Meteor.,33, 977–983.

    • Crossref
    • Export Citation
  • Banta, R. M., L. D. Olivier, and J. M. Intrieri, 1990: Doppler lidar observations of the 9 January 1989 severe downslope windstorm in Boulder, Colorado. Preprints, Fifth Conf. on Mountain Meteorology, Boulder, CO, Amer. Meteor. Soc., 68–69.

  • ——, ——, and W. D. Neff, 1991: Doppler lidar observations of air flow in the Grand Canyon. Preprints, 84th Annual Meeting of the AWMA, Vol. 2, Atmospheric Monitoring and Measurement, Vancouver, BC, Canada, Air and Waste Management Association, 91-47.11.

  • ——, ——, E. T. Holloway, B. W. Bartram, R. E. Cupp, and M. J. Post, 1992: Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteor.,31, 1328–1349.

    • Crossref
    • Export Citation
  • ——, ——, and R. M. Hardesty, 1993a: Doppler lidar and mesoscale atmospheric flows. Proc. Seventh Conf. on Coherent Laser Radar: Applications and Technology Topical Meeting, Paris, France, Optical Society of America, 147–149.

  • ——, ——, and D. H. Levinson, 1993b: Evolution of the Monterey Bay sea breeze as observed by pulsed Doppler lidar. J. Atmos. Sci.,50, 3959–3982.

    • Crossref
    • Export Citation
  • Barth, M. F., P. A. Miller, D. W. van de Kamp, B. E. Schwartz, R. B. Chadwick, B. L. Weber, and D. B. Wuertz, 1995: An evaluation of real-time quality control techniques applied to subhourly wind profiler data. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 453–458.

  • Bendat, J. S., and A. G. Pierson, 1986: Random Data: Analysis and Measurement Procedures. 2d ed. John Wiley and Sons, 566 pp.

  • Benedetti-Michelangeli, G., F. Congeduti, and G. Fiocco, 1972: Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar. J. Atmos. Sci.,29, 906–910.

    • Crossref
    • Export Citation
  • Bilbro, J., G. Fichtl, D. Fitzjarrald, M. Krause, and R. Lee, 1984: Airborne Doppler lidar wind field measurements. Bull. Amer. Meteor. Soc.,65, 348–359.

    • Crossref
    • Export Citation
  • ——, C. DiMarzio, D. Fitzjarrald, S. Johnson, and W. Jones, 1986: Airborne Doppler lidar measurements. Appl. Opt.,25, 3952–3960.

    • Crossref
    • Export Citation
  • Blumen, W., and J. E. Hart, 1988: Airborne Doppler lidar wind field measurements of waves in the lee of Mount Shasta. J. Atmos. Sci.,45, 1571–1583.

    • Crossref
    • Export Citation
  • Brewer, W. A., and R. M. Hardesty, 1995: Development of a dual-wavelength CO2 mini-MOPA Doppler lidar. Coherent Laser Radar, 1995 OSA Technical Digest Series, Vol. 19, Optical Society of America, 293–296.

  • Carroll, J. J., 1986: Accuracy of wind measurements using an airborne Doppler lidar. J. Atmos. Oceanic Technol.,3, 3–11.

    • Crossref
    • Export Citation
  • Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnson, A. C. Riddle, J. Wilson, and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci.,30, 977–1001.

    • Crossref
    • Export Citation
  • Cliff, W. C., and J. R. Skarda, 1987: Atmospheric lateral and longitudinal turbulent length scales (measured at 600 to 800 meters above grade level). Turbulence Measurements and Flow Modeling, C. J. Chen, L. D. Chen, and F. M. Holly Jr., Eds., Hemisphere Publishing, 89–98.

  • Congeduti, F., G. Fiocco, A. Adriani, and G. Guarrella, 1981: Vertical wind velocity measurements by a Doppler lidar and comparisons with a Doppler sodar. Appl. Opt.,20, 2048–2054.

    • Crossref
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Eberhard, W. L., R. E. Cupp, and K. R. Healy, 1989: Doppler lidar measurement of profiles of turbulence and momentum flux. J. Atmos. Oceanic Technol.,6, 809–819.

    • Crossref
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol.,5, 432–441.

    • Crossref
    • Export Citation
  • ——, ——, ——, P. E. Currier, J. L. Green, B. L. Weber, and K. S. Gage, 1990: Field tests of a lower tropospheric wind profiler. Radio Sci.,25, 899–906.

    • Crossref
    • Export Citation
  • Eilts, M. D., R. J. Doviak, and A. Sundara-Rajan, 1984: Comparison of winds, waves, and turbulence as observed by airborne lidar, ground-based radars, and instrumented tower. Radio Sci.,19, 1511–1522.

    • Crossref
    • Export Citation
  • Frehlich, R., 1995: Comparison of 2- and 10-μm coherent Doppler lidar performance. J. Atmos. Oceanic Technol.,12, 415–420.

  • ——, and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol.,11, 1217–1230.

    • Crossref
    • Export Citation
  • ——, S. M. Hannon, and S. W. Henderson, 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol.,11, 1517–1528.

    • Crossref
    • Export Citation
  • Gal-Chen, T., M. Xu, and W. L. Eberhard, 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res.,97, 18 409–18 423.

    • Crossref
    • Export Citation
  • Grund, C. J., and M. J. Post, 1992: Design of a near-IR coherent lidar for high spatial and velocity resolution wind measurement. Extended Abstracts, 16th Int. Laser Radar Conference, Cambridge, MA, NASA, 405–408.

  • Hall, F. F., Jr., R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt.,23, 2503–2506.

    • Crossref
    • Export Citation
  • Hannon, S. M., and J. A. Thomson, 1994: Aircraft wake vortex detection with pulsed solid-state coherent laser radar. J. Mod. Opt.,41, 2175–2196.

    • Crossref
    • Export Citation
  • ——, and S. W. Henderson, 1995: Wind measurement applications of coherent lidar. Rev. Laser Eng.,23, 124–130.

    • Crossref
    • Export Citation
  • Hardesty, R. M., and B. F. Weber, 1987: Lidar measurement of turbulence encountered by horizontal-axis wind turbines. J. Atmos. Oceanic Technol.,4, 191–203.

    • Crossref
    • Export Citation
  • Hawley, J. G., R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, 1993: Coherent launch-site atmospheric wind sounder: Theory and experiment. Appl. Opt.,32, 4557–4568.

    • Crossref
    • Export Citation
  • Henderson, S. W., C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers. Opt. Lett.,16, 773–775.

    • Crossref
    • Export Citation
  • ——, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens.,31, 4–14.

    • Crossref
    • Export Citation
  • Intrieri, J. M., A. J. Bedard Jr., and R. M. Hardesty, 1990: Details of colliding thunderstorm outflows as observed by Doppler lidar. J. Atmos. Sci.,47, 1081–1097.

    • Crossref
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Kavaya, M. J., S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett.,14, 776–778.

    • Crossref
    • Export Citation
  • Keeler, R. J., and R. E. Passarelli, 1990: Signal processing for atmospheric radars. Radar in Meteorology, Battan Memorial 40th Anniversary Radar Meteorology Conference, David Atlas, Ed., Amer. Meteor. Soc., 199–229.

    • Crossref
    • Export Citation
  • ——, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, and A. A. Woodfield, 1987: An airborne laser air motion sensing system. Part I: Concept and preliminary experiment. J. Atmos. Oceanic Technol.,4, 113–127.

    • Crossref
    • Export Citation
  • Kropfli, R. A., 1986: Single Doppler radar measurements of turbulence profiles in the convective boundary layer. J. Atmos. Oceanic Technol.,3, 305–314.

    • Crossref
    • Export Citation
  • Lawrence, T. R., B. F. Weber, M. J. Post, R. M. Hardesty, and R. A. Richter, 1986: Comparison of Doppler lidar, rawinsonde, and 915-MHz UHF wind profiler measurements of tropospheric winds. NOAA-TM-ERL-WPL-130, 86 pp. [Available from National Technical Information Service, Springfield, VA 22161.].

  • Lee, R. W., 1983: Boundary-layer observations with an airborne Doppler lidar. Preprints, Proc. 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 655–657.

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. John Wiley and Sons, 239 pp.

  • Mayor, S. D., 1995: Evaluation of the NCAR Doppler lidar and applications to measuring boundary layer structure. NCAR Cooperative Thesis 156, 88 pp. [Available from National Center for Atmospheric Research, Atmospheric Technology Division, Boulder, CO 80307-3000.].

  • ——, R. L. Schwiesow, D. H. Lenschow, and C. L. Frush, 1995: Validation of radial velocity measurements from the NCAR Doppler lidar. Coherent Laser Radar, 1995 OSA Technical Digest Series, Vol. 19, Optical Society of America, 269–272.

  • McCaul, E. W., H. B. Bluestein, and R. J. Doviak, 1986: Airborne Doppler lidar techniques for observing severe thunderstorms. Appl. Opt.,25, 698–708.

    • Crossref
    • Export Citation
  • Menzies, R. T., 1986: Doppler lidar atmospheric wind sensors: A comparative performance evaluation for global measurement applications from earth orbit. Appl. Opt.,25, 2546–2553.

    • Crossref
    • Export Citation
  • Militzer, J. W., 1987: User’s Manual 001-44PAMII-001 Version 1.0: Portable Automated Mesonet II (PAM II). [Available from National Center for Atmospheric Research, Field Observing Facility, P. O. Box 3000, Boulder, CO 80307.].

  • Neiman, P. J., M. A. Shapiro, R. M. Hardesty, B. B. Stankov, R. T. Lawrence, R. J. Zamora, and T. Hampel, 1988a: The pulsed coherent doppler lidar: Observations of frontal structure and the planetary boundary layer. Mon. Wea. Rev.,116, 1671–1681.

    • Crossref
    • Export Citation
  • ——, R. M. Hardesty, M. A. Shapiro, and R. E. Cupp, 1988b: Doppler lidar observations of a downslope windstorm. Mon. Wea. Rev.,116, 2265–2275.

    • Crossref
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc.,56, 527–530.

  • Parsons, D., and Coauthors, 1994: The Integrated Sounding System: Description and preliminary observations from TOGA COARE. Bull. Amer. Meteor. Soc.,75, 553–567.

    • Crossref
    • Export Citation
  • Post, M. J., 1978: Experimental measurements of atmospheric aerosol inhomogeneities. Opt. Lett.,2, 166–168.

    • Crossref
    • Export Citation
  • ——, and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc.,67, 274–281.

    • Crossref
    • Export Citation
  • ——, and R. E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Opt.,29, 4144–4158.

    • Crossref
    • Export Citation
  • ——, R. L. Schwiesow, R. E. Cupp, D. A. Haugen, and J. T. Newman, 1978: A comparison of anemometer- and lidar-sensed wind velocity data. J. Appl. Meteor.,17, 1179–1181.

    • Crossref
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1989: Numerical Recipes. Cambridge University Press, 702 pp.

  • Rothermel, J., C. Kessinger, and D. L. Davis, 1985: Dual-Doppler lidar measurement of winds in the JAWS experiment. J. Atmos. Oceanic Technol.,2, 138–147.

    • Crossref
    • Export Citation
  • Schwiesow, R. L., and M. P. Spowart, 1996: The NCAR airborne infrared lidar system: Status and applications. J. Atmos. Oceanic Technol.,13, 4–15.

    • Crossref
    • Export Citation
  • ——, S. D. Mayor, M. P. Spowart, C. L. Frush, and J. Mann, 1994: Ground-based velocity measurement performance of the NCAR Airborne Infrared Lidar System (NAILS). NCAR Tech. Note NCAR/TN-405+STR, 65 + xii pp. [Available from National Center for Atmospheric Research, Atmospheric Technology Division, Boulder, CO 80307-3000.].

  • Sirmans, D., and B. Bumgarner, 1975: Numerical comparison of five mean frequency estimators. J. Appl. Meteor.,14, 991–1003.

    • Crossref
    • Export Citation
  • Strauch, R. G., B. L. Weber, A. S. Frisch, C. G. Little, D. A. Merritt, K. P. Moran, and D. C. Welsh, 1987: The precision and relative accuracy of profiler wind measurements. J. Atmos. Oceanic Technol.,4, 563–571.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Weber, B. L., and D. B. Wuertz, 1991: Quality control algorithm for profiler measurements of winds and temperatures. NOAA-TM-ERL-WPL-212, 32 pp. [Available from National Technical Information Service, Springfield, VA 22161.].

  • ——, ——, D. C. Welsh, and R. McPeek, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol.,10, 452–464.

  • Willetts, D. V., and M. R. Harris, 1982: An investigation into the origin of frequency sweeping in a hybrid TEA CO2 laser. J. Phys. D: Appl. Phys.,15, 51–67.

    • Crossref
    • Export Citation
  • Zrnić, D. S., 1979: Estimation of spectral moments for weather echoes. IEEE Trans. Geosci. Electron.,17, 113–128.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 3
PDF Downloads 21 21 3

Validation of NCAR 10.6-μm CO2 Doppler Lidar Radial Velocity Measurements and Comparison with a 915-MHz Profiler

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Ball Aerospace and Technology Corporation, Boulder, Colorado
  • | 3 Risø National Laboratory, Roskilde, Denmark
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 National Oceanic and Atmospheric Administration, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The capability of the NCAR 10.6-μm-wavelength CO2 Doppler lidar to measure radial air motion is validated by examining hard-target test data, comparing measurements with those from a two-axis propeller anemometer and a 915-MHz profiling radar, and analyzing power spectra and autocovariance functions of the lidar radial velocities in a daytime convective boundary layer. Results demonstrate that the lidar is capable of measuring radial velocity to less than 0.5 m s−1 precision from 20 laser pulse averages under high signal-to-noise ratio conditions. Hard-target test data and comparisons with other sensors show that the lidar data can be biased by as much as ±2 m s−1 when operating in the coherent oscillator mode and that correlated errors are negligible. Correlation coefficients are as large as 0.96 for 90-min comparisons of horizontal velocities averaged for 1 min from the lidar and anemometer, and 0.87 for 2.5-h comparisons between vertical velocities averaged for 30 s from the lidar and profiler. Comparisons of the lidar and profiler vertical velocities are particularly encouraging for the profiler since these results show that 915-MHz profilers are capable of making good vertical velocity measurements in strong convective boundary layers. The authors conclude that despite the commonplace systematic bias in lidar radial velocity, ground-based operation of the NCAR CO2 Doppler lidar can provide valuable velocity data for meso- and microscale meteorological studies. The lidar can also provide filtered velocity statistics that may be useful for boundary layer turbulence research.

Corresponding author address: Shane D. Mayor, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706-1695.

Email: shane@lidar.ssec.wisc.edu

Abstract

The capability of the NCAR 10.6-μm-wavelength CO2 Doppler lidar to measure radial air motion is validated by examining hard-target test data, comparing measurements with those from a two-axis propeller anemometer and a 915-MHz profiling radar, and analyzing power spectra and autocovariance functions of the lidar radial velocities in a daytime convective boundary layer. Results demonstrate that the lidar is capable of measuring radial velocity to less than 0.5 m s−1 precision from 20 laser pulse averages under high signal-to-noise ratio conditions. Hard-target test data and comparisons with other sensors show that the lidar data can be biased by as much as ±2 m s−1 when operating in the coherent oscillator mode and that correlated errors are negligible. Correlation coefficients are as large as 0.96 for 90-min comparisons of horizontal velocities averaged for 1 min from the lidar and anemometer, and 0.87 for 2.5-h comparisons between vertical velocities averaged for 30 s from the lidar and profiler. Comparisons of the lidar and profiler vertical velocities are particularly encouraging for the profiler since these results show that 915-MHz profilers are capable of making good vertical velocity measurements in strong convective boundary layers. The authors conclude that despite the commonplace systematic bias in lidar radial velocity, ground-based operation of the NCAR CO2 Doppler lidar can provide valuable velocity data for meso- and microscale meteorological studies. The lidar can also provide filtered velocity statistics that may be useful for boundary layer turbulence research.

Corresponding author address: Shane D. Mayor, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706-1695.

Email: shane@lidar.ssec.wisc.edu

Save