• Apel, J. R., 1994: An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res, 99 , 16 26916 291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, R. C., , DeLeonibus P. S. , , and Katz I. , 1982: Spaceborne Synthetic Aperture Radar for Oceanography, The Johns Hopkins Press. 213. pp.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability, and roughness results due to the use of the different transfer coefficient scheme. J. Phys. Oceanogr, 15 , 650669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, G. S., 1981: The wind-speed measurement capability of spaceborne radar altimeters. IEEE J. Oceanic Eng, OE-6 , 5963.

  • Brown, G. S., 1990: Quasi-specular scattering from the air-sea interface. Surface Waves and Fluxes, W. Plant and G. Geernaert, Eds. Vol. 2 , Kluwer Academic. 140.

    • Search Google Scholar
    • Export Citation
  • Colton, M. C., , Plant W. J. , , Keller W. C. , , and Geernaert G. L. , 1995: Tower-based measurements of normalized radar cross section from Lake Ontario: Evidence of wind stress dependence. J. Geophys. Res, 100 , 87918813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. S., 1958: Measurement of slopes of high-frequency wind waves. J. Mar. Res, 16 , 199225.

  • Cox, C. S., , and Munk W. , 1954: Statistics of the sea surface derived from sun glitter. J. Mar. Res, 13 , 198227.

  • Cox, C. S., , and Munk W. , 1956: Slopes of the sea surface deduced from photographs of sun glitter. Bull. Scripps Inst. Oceanogr, 6 , 401488.

    • Search Google Scholar
    • Export Citation
  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175 , 681682.

  • Dobson, F., 1985: Comment on “Measurement of high-frequency waves using a wave follower” by S. Tang and O. H. Shemdin. J. Geophys. Res, 90 , 92039204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , and Pierson W. J. , 1987: Radar scattering and equilibrium range in wind-generated waves with application to scatterometry. J. Geophys. Res, 92 , 49715029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , Hamilton J. , , and Hui W. H. , 1985: Directional spectra of wind generated waves. Philos. Trans. Roy. Soc. London, Ser., A, 315 , 509562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors. 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A (8°), Nr. 12, Deutsches Hydrographisches Institut, Hamburg, Germany. 95. pp.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., , St-Cyr G. , , and Woods N. E. , 1986: A radar ocean imaging model for small to moderated incidence angles. Int. J. Remote Sens, 7 , 18091834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, B. A., 1978: The effect of internal waves on surface wind waves. 2. Theoretical analysis. J. Geophys. Res, 83 , 455465.

  • Hughes, B. A., , Grant H. L. , , and Chappell R. W. , 1977: A fast response surface-wave slope meter and measured wind-wave moments. Deep-Sea Res, 24 , 12111223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1992: Optical measurements of short wave modulation by surface currents. Optics of the Air-Sea Interface: Theory and Measurement, San Francisco, CA SPIE. 216221.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 1995: Spatial measurements of small-scale ocean waves. Air-Water Gas Transfer, Third International Symposium on Air-Water Gas Transfer, B. Jahne and E. C. Monahan, Eds., Aeon Verlag and Studio. 153164.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , and Shemdin O. H. , 1988: The dependence of sea surface slope on atmospheric stability and swell condition. J. Geophys. Res, 93 , 13 90313 912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , and Shemdin O. H. , 1990: Modulation of short waves by surface currents—A numerical solution. J. Geophys. Res, 95 , 16 31116 318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , Xu D. , , and Wu J. , 1989: Breaking of wind-generated waves: Measurements and characteristics. J. Fluid Mech, 202 , 177200.

  • Hwang, P. A., , Trizna D. B. , , and Wu J. , 1993: Spatial measurements of short wind waves using a scanning slope sensor. Dyn. Atmos. Oceans, 20 , 123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , Atakturk S. , , Sletten M. A. , , and Trizna D. B. , 1994: Wavenumber spectrum of capillary-gravity waves in the ocean. Preprints. Second Int. Conf. on Air-Sea Interaction and on Meteorology and Oceanography of the Coastal Zone, Lisbon, Portugal, Amer. Meteor. Soc. 8081.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , Atakturk S. , , Sletten M. A. , , and Trizna D. B. , 1996: A study of the wavenumber spectra of short water waves in the ocean. J. Phys. Oceanogr, 26 , 12661285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , Wang D. W-C. , , Teague W. J. , , and Jacobs G. A. , 1997: Effect of surface tilting on altimeter wind measurements. J. Geophys. Res, in press.

    • Search Google Scholar
    • Export Citation
  • Jackson, F. C., , Walton W. T. , , Hines D. E. , , Walter B. A. , , and Peng C. Y. , 1992: Sea surface mean square slope from Ku-band backscatter data. J. Geophys. Res, 97 , 11 41111 427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahne, B., , and Riemer K. S. , 1990: Two-dimensional wavenumber spectra of small-scale water surface waves. J. Geophys. Res, 95 , 11 43111 546.

    • Search Google Scholar
    • Export Citation
  • Jessup, A., , Keller W. C. , , and Melville K. , 1990: Measurement of sea spikes in microwave scatter at moderate incidence. J. Geophys. Res, 95 , 96799688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. L., , and Schroeder L. C. , 1978: Radar backscatter from the ocean: Dependence on surface friction velocity. Bound.-Layer Meteor, 13 , 133149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and Pond S. , 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr, 11 , 324336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , Katsaros K. B. , , and Businger J. A. , 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci, 36 , 17221735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and Yan X-H. , 1995: The wind-induced wave growth rate and the spectrum of the gravity–capillary waves. J. Phys. Oceanogr, 25 , 31963218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuko, H., , Okomoto K. , , Shimada M. , , and Niwa S. , 1986: Measurement of microwave backscattering signatures of the ocean surface using X-band and Ku-band airborne scatterometers. J. Geophys. Res, 91 , 13 06513 083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean, 2d ed. Cambridge University Press. 336. pp.

  • Phillips, O. M., 1984: On the response of short ocean wave component at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr, 14 , 14251433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech, 156 , 505531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1988: Radar return from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr, 18 , 10651074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., , and Moskowitz L. , 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res, 69 , 51815190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., , and Stacy R. A. , 1973: The elevation slope and curvature spectra of a wind roughened sea surface. NASA Contract Rep. CR-2247, 126. pp.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1990: Bragg scattering of electromagnetic waves from the air/sea interface. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds. Vol. II , Kluwer Academic. 41108.

    • Search Google Scholar
    • Export Citation
  • Schule, J. J., , Simpson L. S. , , and DeLeonibus P. S. , 1971: A study of fetch limited wave spectra with an airborne laser. J. Geophys. Res, 76 , 41604171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., , and Hwang P. A. , 1988: Comparison of measured and predicted sea surface spectra of short waves. J. Geophys. Res, 93 , 13 88313 890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 1985: Method of Satellite Oceanography, University of California Press. 360. pp.

  • Sutherland, A., 1968: Growth of spectral components in a wind-generated wave train. J. Fluid Mech, 33 , 545560.

  • Tang, S., , and Shemdin O. H. , 1983: Measurement of high frequency waves using a wave follower. J. Geophys. Res, 88 , 98329840.

  • Thompson, D. R., 1988: Calculation of radar backscatter modulation from internal waves. J. Geophys. Res, 93 , 12 37112 380.

  • Trizna, D. B., , Hansen J. P. , , Hwang P. , , and Wu J. , 1991: Laboratory studies of radar sea spikes at low grazing angles. J. Geophys. Res, 96 , 12 52912 537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trizna, D. B., , Hansen J. P. , , Hwang P. , , and Wu J. , 1993: Ultra-wideband radar studies of steep crested waves with scanning laser measurements of wave slope profiles. Dyn. Atmos. Oceans, 20 , 3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor, 13 , 6185.

  • Weissman, D. E., , Davidson K. L. , , Brown R. A. , , Frieche C. A. , , and Li F. , 1994: Relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data. J. Geophys. Res, 99 , 10 08710 108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1977: A two scale scattering model with application to the JONSWAP '75 Aircraft Microwave Scatterometer Experiment. NASA Contract Rep. 2919.

    • Search Google Scholar
    • Export Citation
  • Wetzel, L. B., 1993: A time domain model for sea scatter. Radio Sci, 28 , 139150.

  • Winebrenner, D. P., , and Hasselmann K. , 1988: Specular point scattering contribution to the mean synthetic aperture radar image of the ocean surface. J. Geophys. Res, 93 , 92819294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. W., 1966: Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag, AP-14 , 749754.

    • Search Google Scholar
    • Export Citation
  • Wright, J. W., 1968: A new model for sea clutter. IEEE Trans. Antennas Propag, AP-16 , 217223.

  • Wu, J., 1972: Sea-surface slope and equilibrium wind-wave spectra. Phys. Fluids, 15 , 741747.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 6
PDF Downloads 44 44 5

A Study of the Wavenumber Spectra of Short Water Waves in the Ocean. Part II: Spectral Model and Mean Square Slope

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper presents a wavenumber spectral model of the surface water waves in the capillary–gravity regime. The database for the analysis consists of spatial and temporal measurements of surface slopes obtained from a scanning slope sensor buoy operating in free-drift mode in the Atlantic Ocean. These data indicate that the contribution of mean square slopes from capillary–gravity waves (wavelengths from 4 mm to 6 cm) is a significant portion of the total mean square slopes. The resulting mean square slopes derived from the proposed spectral model are in excellent agreement with existing field datasets.

The properties of short waves, including the mean square slopes and wind speed dependence of the spectral intensity of individual wave components, derived from optical and microwave sensors are also compared. Significant differences in terms of the magnitudes of the mean square slopes and the exponents of wind speed dependence are found. Some of the possible explanations of the discrepancies are explored.

Corresponding author address: Dr. Paul A. Hwang, Finescale and Mesoscale Ocean Physics, Naval Research Laboratory, Code 7332, Stennis Space Center, MS 39529. Email: phwang@nrlssc.navy.mil

Abstract

This paper presents a wavenumber spectral model of the surface water waves in the capillary–gravity regime. The database for the analysis consists of spatial and temporal measurements of surface slopes obtained from a scanning slope sensor buoy operating in free-drift mode in the Atlantic Ocean. These data indicate that the contribution of mean square slopes from capillary–gravity waves (wavelengths from 4 mm to 6 cm) is a significant portion of the total mean square slopes. The resulting mean square slopes derived from the proposed spectral model are in excellent agreement with existing field datasets.

The properties of short waves, including the mean square slopes and wind speed dependence of the spectral intensity of individual wave components, derived from optical and microwave sensors are also compared. Significant differences in terms of the magnitudes of the mean square slopes and the exponents of wind speed dependence are found. Some of the possible explanations of the discrepancies are explored.

Corresponding author address: Dr. Paul A. Hwang, Finescale and Mesoscale Ocean Physics, Naval Research Laboratory, Code 7332, Stennis Space Center, MS 39529. Email: phwang@nrlssc.navy.mil

Save