Data Assimilation by Optimal Control Method in a 3D Coastal Oceanic Model: The Problem of Discretization

Jean-Michel Lellouche Centre d’Océanologie de Marseille, Marseille, France

Search for other papers by Jean-Michel Lellouche in
Current site
Google Scholar
PubMed
Close
,
Jean-Luc Devenon LSEET, Université de Toulon et du Var, La Garde, France

Search for other papers by Jean-Luc Devenon in
Current site
Google Scholar
PubMed
Close
, and
Ivan Dekeyser Centre d’Océanologie de Marseille, Marseille, France

Search for other papers by Ivan Dekeyser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A methodology to proceed from the continuous to the discrete formulation of a control problem is described. The aim of a boundary control procedure is to identify boundary forcing to ensure the best fit between data and model results by minimizing a function that measures model and data discrepancies. A continuous variational formulation involving the adjoint technique is used. To ensure the minimization of the “cost function” in the discretized form as well as in its continuous form, particular discretizations are performed. The model considered at first is given by Burger’s equation. Then results are extended to a typical 3D multilayered ocean circulation model for a semienclosed basin Kelvin wave.

Corresponding author address: Jean-Michel Lellouche, Centre d’Oceanologie de Marseille, Universite d’Aix-Marseille 2, Campus de Luminy, Case 901-F, 13288 Marseille, Cedex 09, France.

Abstract

A methodology to proceed from the continuous to the discrete formulation of a control problem is described. The aim of a boundary control procedure is to identify boundary forcing to ensure the best fit between data and model results by minimizing a function that measures model and data discrepancies. A continuous variational formulation involving the adjoint technique is used. To ensure the minimization of the “cost function” in the discretized form as well as in its continuous form, particular discretizations are performed. The model considered at first is given by Burger’s equation. Then results are extended to a typical 3D multilayered ocean circulation model for a semienclosed basin Kelvin wave.

Corresponding author address: Jean-Michel Lellouche, Centre d’Oceanologie de Marseille, Universite d’Aix-Marseille 2, Campus de Luminy, Case 901-F, 13288 Marseille, Cedex 09, France.

Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Meth. Comput. Phys.,17, 173–265.

    • Crossref
    • Export Citation
  • Batteen, M. L., and Y. J. Han, 1981: On the computational noise of finite-difference schemes used in ocean models. Tellus,33, 387–396.

    • Crossref
    • Export Citation
  • Bennett, A. F., 1992: Inverse methods in physical oceanography. Cambridge Monographs on Mechanics and Applied Mathematics, Press Syndicate of the University of Cambridge, 346 pp.

  • ——, and P. C. McIntosh, 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr.,12, 1004–1018.

    • Crossref
    • Export Citation
  • Chartier, M., 1985: Un modèle numérique tridimensionnel aux équations primitives de circulation générale de l’oéan. Thèse de doctorat de l’Université Paris 6, 111 pp.

  • Courant, R., K. Friedrichs, and H. Lewy, 1928: Uber die partiellen differenzengleichungen der mathematischen physik. Math. Ann.,100, 32–74.

    • Crossref
    • Export Citation
  • Courtier, P., 1987: Application du contrôle optimal à la prévision numérique en métérologie. Thèse de doctorat de l’Université Pierre et Marie Curie, 275 pp.

  • ——, and O. Talagrand, 1990: Variationnal assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus,42, 531–549.

    • Crossref
    • Export Citation
  • Das, S. K., and R. W. Lardner, 1992: Variational parameter estimation for a two-dimensional numerical tidal model. Int. J. Numer. Meth. Fluid,15, 313–327.

    • Crossref
    • Export Citation
  • Devenon, J.-L., 1986: Utilisation de mesures de courants côtiers superficiels par radar HF pour valider et optimiser les modèles numériques de circulation littorale en mer à marée. Thèse de doctorat de l’Université Paris 6, 224 pp.

  • ——, 1990: Optimal control theory applied to an objective analysis of a tidal current mapping by HF radar. J. Atmos. Oceanic Technol.,7, 269–284.

    • Crossref
    • Export Citation
  • Euvrard, D., 1987: Résolution Numérique des Équations aux Dérivées Partielles de la Physique, de la Mécanique et des Sciences de L’Ingénieur—Différences Finies, Éléments Finis. Masson, 284 pp.

  • Gawain, T. H., and J. W. Prittchett, 1970: A unified heuristic model of fluid turbulence. J. Comput. Phys.,5, 383–396.

    • Crossref
    • Export Citation
  • Gilbert, J. C., and C. Lemarechal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Programm.,45, 407–435.

    • Crossref
    • Export Citation
  • Hoffman, R. N., J. F. Louis, and T. Nehrkorn, 1992: A method for implementing adjoint calculations in the discrete case, Tech. Memo. 184, Internal Rep. ECMWF, 20 pp.

  • Le Dimet, F.-X., 1993: Optimal control—Adjoints equations. Theory, Methods and Related Problems, International Summer School on Assimilation of Meteorological and Oceanographic Observations, 30 pp.

  • ——, and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus,38, 97–110.

    • Crossref
    • Export Citation
  • Leendertse, J. J., 1973: Three-dimensional model for estuaries and coastal seas—Principles of computation. The RAND Corporation (California), Internal Rep. 1, 57 pp. [Available from The RAND Corporation, 1700 Main Street, P. O. Box 2138, Santa Monica, CA.].

  • ——, 1975: Three-dimensional model for estuaries and coastal seas—Aspects of computation. The RAND Corporation (California), Internal Rep. 2, 123 pp. [Available from The RAND Corporation, 1700 Main Street, P. O. Box 2138, Santa Monica, CA.].

  • ——, 1977: Three-dimensional model for estuaries and coastal seas—Turbulent energy computation. The RAND Corporation (California), Internal Rep. 4, 59 pp. [Available from The RAND Corporation, 1700 Main Street, P. O. Box 2138, Santa Monica, CA.].

  • Lellouche, J. M., J. L. Devenon, and I. Dekeyser, 1994: Boundary control of Burger’s equation—A numerical approach. Comp. Math. Appl.,28 (5), 33–44.

    • Crossref
    • Export Citation
  • Lions, J.-L., 1968: Contrôle Optimal de Systèmes Gouvernés par des Opérateurs aux Dérivées Partielles. Dunod, 426 pp.

  • McIntosh, P. C., and A. F. Bennett, 1984: Open ocean modeling as an inverse problem: M2 tides in Bass Strait. J. Phys. Oceanogr.,14, 601–614.

    • Crossref
    • Export Citation
  • Menke, W., 1984: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, 224 pp.

    • Crossref
    • Export Citation
  • Nihoul, J. C. J., E. Deleersnijder, and S. Djenidi, 1989: Modelling the general circulation of shelf seas by 3-D kε models. Earth Sci. Rev.,26, 163–189.

    • Crossref
    • Export Citation
  • Rostaing, N., S. Dalmas, and A. Galligo, 1993: Automatic differenciation in Odysse. Tellus,24, 154–163.

  • Sasaki, Y. K, 1958: An objective analysis based on a variational method. J. Meteor. Soc. Japan,36, 1–12.

    • Crossref
    • Export Citation
  • ——, 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev.,98, 875–883.

    • Crossref
    • Export Citation
  • Talagrand, O., 1991: The use of adjoint equations in numerical modelling of the atmospheric circulation. Proc. in Applied Mathematics (SIAM) on Automatic Differentiation of Algorithms: Theory, Implementation, and Application, SIAM, 169–180.

  • Thacker, W. C., 1990: Large least square problems and the need of automating the generation of adjoint codes. Lectures in Applied Mathematics 26, Computational Solution of Nonlinear Systems of Equations, American Mathematical Society, 645–667.

  • Thouvenin, B., and J. C. Salomon, 1984: Modèle tridimensionnel de circulation et de dispersion en zone côtière à marée. Premiers essais: Cas schématique et baie de Seine. Oceanol. Acta,7 (4), 417–429.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 44 10
PDF Downloads 92 24 5