Effects of Nonuniform Beam Filling on Rainfall Retrieval for the TRMM Precipitation Radar

S. L. Durden Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. L. Durden in
Current site
Google Scholar
PubMed
Close
,
Z. S. Haddad Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Z. S. Haddad in
Current site
Google Scholar
PubMed
Close
,
A. Kitiyakara Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by A. Kitiyakara in
Current site
Google Scholar
PubMed
Close
, and
F. K. Li Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. K. Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) will carry the first spaceborne radar for rainfall observation. Because the TRMM Precipitation Radar (PR) footprint size of 4.3 km is greater than the scale of some convective rainfall events, there is concern that nonuniform filling of the PR antenna beam may bias the retrieved rain-rate profile. The authors investigate this effect theoretically and then observationally using data from the NASA Jet Propulsion Laboratory Airborne Rain Mapping Radar (ARMAR), acquired during Tropical Oceans Global Atmosphere Coupled Ocean–Atmosphere Response Experiment in early 1993. The authors’ observational approach is to simulate TRMM PR data using the ARMAR data and compare the radar observables and retrieved rain rate from the simulated PR data with those corresponding to the high-resolution radar measurements. The authors find that the path-integrated attenuation and the resulting path-averaged rain rate are underestimated. The reflectivity and rain rate near the top of the rainfall column are overestimated. The near-surface reflectivity can be overestimated or underestimated, with a mean error very close to zero. The near-surface rain rate, however, is usually underestimated, sometimes severely.

Corresponding author address: Dr. Stephen L. Durden, JPL—Mail Stop 300-227, 4800 Oak Grove Drive, Pasadena, CA 91109.

Email: durden@kappa.jpl.nasa.gov

Abstract

The Tropical Rainfall Measuring Mission (TRMM) will carry the first spaceborne radar for rainfall observation. Because the TRMM Precipitation Radar (PR) footprint size of 4.3 km is greater than the scale of some convective rainfall events, there is concern that nonuniform filling of the PR antenna beam may bias the retrieved rain-rate profile. The authors investigate this effect theoretically and then observationally using data from the NASA Jet Propulsion Laboratory Airborne Rain Mapping Radar (ARMAR), acquired during Tropical Oceans Global Atmosphere Coupled Ocean–Atmosphere Response Experiment in early 1993. The authors’ observational approach is to simulate TRMM PR data using the ARMAR data and compare the radar observables and retrieved rain rate from the simulated PR data with those corresponding to the high-resolution radar measurements. The authors find that the path-integrated attenuation and the resulting path-averaged rain rate are underestimated. The reflectivity and rain rate near the top of the rainfall column are overestimated. The near-surface reflectivity can be overestimated or underestimated, with a mean error very close to zero. The near-surface rain rate, however, is usually underestimated, sometimes severely.

Corresponding author address: Dr. Stephen L. Durden, JPL—Mail Stop 300-227, 4800 Oak Grove Drive, Pasadena, CA 91109.

Email: durden@kappa.jpl.nasa.gov

Save
  • Amayenc, P., M. Marzoug, and J. Testud, 1993: Analysis of cross-beam resolution effects in rainfall rate profile retrieval from a spaceborne radar. IEEE Trans. Geosci. Remote Sens.,31, 417–425.

    • Crossref
    • Export Citation
  • ——, J. P. Diguet, M. Marzoug, and T. Tani, 1996: A class of single- and dual-frequency algorithms for rain-rate profiling from a spaceborne radar. Part II: Tests from airborne radar measurements. J. Atmos. Oceanic Technol.,13, 142–164.

    • Crossref
    • Export Citation
  • Durden, S. L., E. Im, F. K. Li, W. Ricketts, A. Tanner, and W. Wilson, 1994: ARMAR: An airborne rain mapping radar. J. Atmos. Oceanic Technol.,11, 727–737.

    • Crossref
    • Export Citation
  • Goldhirsh, J., and B. Musiani, 1986: Rain cell size statistics derived from radar observations at Wallops Island, Virginia. IEEE Trans. Geosci. Remote Sens.,GE-24, 947–954.

    • Crossref
    • Export Citation
  • Graves, C. E., 1993: A model for the beam-filling effect associated with the microwave retrieval of rain. J. Atmos. Oceanic Technol.,10, 5–14.

    • Crossref
    • Export Citation
  • Ha, E., and G. R. North, 1995: Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers. J. Atmos. Oceanic Technol.,12, 268–281.

    • Crossref
    • Export Citation
  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor.,11, 58–67.

    • Crossref
    • Export Citation
  • Houze, R. A., 1981: Structures of atmospheric precipitation systems:A global survey. Radio Sci.,16, 671–689.

    • Crossref
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol.,11, 1507–1516.

    • Crossref
    • Export Citation
  • Kedem, B., L. S. Chiu, and G. R. North, 1990: Estimation of mean rain rate: Application to satellite observations. J. Geophys. Res.,95, 1965–1972.

    • Crossref
    • Export Citation
  • Kozu, T., and T. Iguchi, 1996: A preliminary study of non-uniform beam filling correction for spaceborne radar rainfall measurement. I.E.I.C.E. Trans. Comm.,E79-B, 763–769.

  • Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor.,33, 3–18.

    • Crossref
    • Export Citation
  • Lopez, R. E., 1977: The lognormal distribution and cumulus cloud populations. Mon. Wea. Rev.,105, 865–872.

    • Crossref
    • Export Citation
  • Marzoug, M., and P. Amayenc, 1994: A class of single- and dual-frequency algorithms for rain-rate profiling from a spaceborne radar. Part I: Principle and tests from numerical simulations. J. Atmos. Oceanic Technol.,11, 1480–1506.

  • Meneghini, R., 1978: Rain-rate estimates for an attenuating radar. Radio Sci.,13, 459–470.

    • Crossref
    • Export Citation
  • ——, J. Eckerman, and D. Atlas, 1983: Determination of rain rate from a spaceborne radar using measurements of total attenuation. IEEE Trans. Geosci. Remote Sens.,GE-21, 34–43.

    • Crossref
    • Export Citation
  • Nakamura, K., 1991: Biases of rain retrieval algorithms for spaceborne radar caused by nonuniformity of rain. J. Atmos. Oceanic Technol.,8, 363–373.

  • ——, K. Okamoto, T. Ihara, J. Awaka, T. Kozu, and T. Manabe, 1990:Conceptual design of rain radar for the Tropical Rainfall Measuring Mission. Int. J. Satellite Comm.,8, 257–268.

  • Olsen, R. L., D. V. Rogers, and D. B. Hodge, 1978: The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propagat.,AP-26, 318–329.

    • Crossref
    • Export Citation
  • Schroeder, L. C., P. R. Schaffner, J. L. Mitchell, and W. L. Jones, 1985: AAFE RAD-SCAT 13.9 GHz measurements and analysis:Wind-speed signature of the ocean. IEEE J. Oceanic Eng.,OE-10, 346–357.

    • Crossref
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc.,69, 278–295.

    • Crossref
    • Export Citation
  • Testud, J., P. Amayenc, X. K. Dou, and T. F. Tani, 1996: Tests of rain profiling algorithms for a spaceborne radar using raincell models and real data precipitation fields. J. Atmos. Oceanic Technol.,13, 426–453.

    • Crossref
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE—The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc.,73, 1377–1416.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 95 2
PDF Downloads 89 33 1