• Bissonnette, L. R., 1986: Sensitivity analysis of lidar inversion algorithms. Appl. Opt.,25, 2122–2125.

    • Crossref
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley and Sons, 530 pp.

  • d’Almeida, G., P. Koepke, and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

  • Fitzgerald, J. W., 1984: Effect of relative humidity on the aerosol backscattering coefficient at 0.694- and 10.6-μm wavelengths. Appl. Opt.,23, 411–418.

  • Hänel, G., 1976: The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics, Vol. 19, Academic Press, 73–188.

    • Crossref
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc.,79, 831–844.

    • Crossref
    • Export Citation
  • Hughes, H. G., J. A. Ferguson, and D. H. Stephens, 1985: Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction. Appl. Opt.,.

    • Crossref
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt.,20, 211–220.

    • Crossref
    • Export Citation
  • ——, 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt.,24, 1638–1643.

    • Crossref
    • Export Citation
  • Kovalev, V. A., 1993: Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios. Appl. Opt.,32, 6053–6065.

    • Crossref
    • Export Citation
  • McCormick, M. P., J. D. Lawrence, and F. R. Crownfield, 1968: Mie total and differential backscattering cross sections at laser wavelengths for Junge aerosol models. Appl. Opt.,7, 2424–2425.

    • Crossref
    • Export Citation
  • Pratt, R. W., 1985: Review of radiosonde humidity and temperature errors. J. Atmos. Oceanic Technol.,2, 404–407.

    • Crossref
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes inFORTRAN. Cambridge University Press, 963 pp.

  • Rosen, J. M., R. G. Pinnick, and D. M. Garvey, 1997: Measurement of the extinction-to-backscatter for near-surface aerosols. J. Geophys. Res.,102, 6017–6024.

    • Crossref
    • Export Citation
  • Salemink, H., P. Schotanus, and J. B. Bergwerff, 1984: Quantitative lidar at 532 nm for vertical extinction profiles in the lidar solution. Appl. Phys.,34B, 187–189.

    • Crossref
    • Export Citation
  • Sasano, Y., and E. V. Browell, 1989: Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Appl. Opt.,28, 1670–1679.

    • Crossref
    • Export Citation
  • ——, ——, and S. Ismail, 1985: Error caused by using a constant extinction/backscattering ratio in the lidar solution. Appl. Opt.,24, 3929–3932.

    • Crossref
    • Export Citation
  • Shettle, E. P., and R. W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Air Force Geophysics Laboratory Environmental Research Papers 676, AFGL-TR79-TR79-0214, 94 pp. [Available from Air Force Geophysics Laboratory, Hanscom AFB, Massachusetts 01731.].

  • Spinhirne, J. D., J. A. Reagan, and B. M. Herman, 1980: Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteor.,19, 426–438.

    • Crossref
    • Export Citation
  • Takamura, T., Y. Sasano, and T. Hayasaka, 1994: Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements. Appl. Opt.,33, 7132–7140.

    • Crossref
    • Export Citation
  • Waggoner, A. P., N. C. Ahlquist, and R. J. Charlson, 1972: Measurement of the aerosol total scatter-backscatter ratio. Appl. Opt.,11, 2886–2889.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 239 17
PDF Downloads 507 250 22

The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study

View More View Less
  • 1 Meteorologisches Institut, Universität München, Munich, Germany
Restricted access

Abstract

An adequate estimation of the aerosol extinction-to-backscatter ratio S is important for solving the underdetermined single scattering lidar equation and for investigating the climate impact of aerosols. In this study, the extinction-to-backscatter ratios for the Nd:YAG wavelengths are calculated for continental, maritime, and desert aerosols; the corresponding aerosol components are varied within the expected natural variabilities of the particle number mixing ratios.

For continental aerosol, S increases with the relative humidity f from 40 to 80 sr. For maritime aerosol, the extinction-to-backscatter ratios lie between 15 and 30 sr for 355 and 532 nm and between 25 and 50 sr for 1064 nm. The desert aerosol exhibits a weak dependence of S on f and ranges between 42 and 48 sr for 355 nm and between 17 and 25 sr for 532 and 1064 nm. For practical applications, the calculated values of S are fitted by a power series expansion with respect to their dependence on f.

Corresponding author address: Dr. Jörg Ackermann, MIM - Meteorologisches Inst., Universität München, Theresienstr. 37, 80333 München, Germany.

Email: uh234aj@mail.lrz-muenchen.de

Abstract

An adequate estimation of the aerosol extinction-to-backscatter ratio S is important for solving the underdetermined single scattering lidar equation and for investigating the climate impact of aerosols. In this study, the extinction-to-backscatter ratios for the Nd:YAG wavelengths are calculated for continental, maritime, and desert aerosols; the corresponding aerosol components are varied within the expected natural variabilities of the particle number mixing ratios.

For continental aerosol, S increases with the relative humidity f from 40 to 80 sr. For maritime aerosol, the extinction-to-backscatter ratios lie between 15 and 30 sr for 355 and 532 nm and between 25 and 50 sr for 1064 nm. The desert aerosol exhibits a weak dependence of S on f and ranges between 42 and 48 sr for 355 nm and between 17 and 25 sr for 532 and 1064 nm. For practical applications, the calculated values of S are fitted by a power series expansion with respect to their dependence on f.

Corresponding author address: Dr. Jörg Ackermann, MIM - Meteorologisches Inst., Universität München, Theresienstr. 37, 80333 München, Germany.

Email: uh234aj@mail.lrz-muenchen.de

Save