The Optical Spectropluviometer Revisited

Christian Salles Geofluides Bassins Eau, Université de Montpellier, Montpellier, France

Search for other papers by Christian Salles in
Current site
Google Scholar
PubMed
Close
,
Jean-Dominique Creutin Laboratoire d’Etude des Trauferts en Hydrologie et Environnement, Université de Grenoble, Grenoble, France

Search for other papers by Jean-Dominique Creutin in
Current site
Google Scholar
PubMed
Close
, and
Daniel Sempere-Torres Deparamento d’Enginyeria Hydràulica, Maritima i Ambiental, Universitat Politecnica de Catalunya, Barcelona, Spain

Search for other papers by Daniel Sempere-Torres in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The optical spectropluviometer is a shadowgraph instrument able to measure independently the equivalent diameter and the fall speed of raindrops at ground level. Hardware and software modifications are proposed and tested. A modern digital signal processing system allows for the simultaneous sampling and analyzing of the signal delivered by the sensor. The IR light transmission is pulsed to avoid interference with natural radiation and the protection of the optics is improved. The validation procedure consists of comparing the rain rates derived from the measured drop size distributions with rain rates delivered by nearby rain gauges. The results obtained during 65 storm events show that the proposed improvements reduce the bias of the rain-rate estimation from 34% to 16%. Suggestions are given to further improve the performance of this instrument.

Corresponding author address: Christian Salles, Laboratory for Experimental Geomorphology, Redingenstraat 16, B-3000 Leuven, Belgium.

Email: christian.salles@geo.kuleuven.ac.be

Abstract

The optical spectropluviometer is a shadowgraph instrument able to measure independently the equivalent diameter and the fall speed of raindrops at ground level. Hardware and software modifications are proposed and tested. A modern digital signal processing system allows for the simultaneous sampling and analyzing of the signal delivered by the sensor. The IR light transmission is pulsed to avoid interference with natural radiation and the protection of the optics is improved. The validation procedure consists of comparing the rain rates derived from the measured drop size distributions with rain rates delivered by nearby rain gauges. The results obtained during 65 storm events show that the proposed improvements reduce the bias of the rain-rate estimation from 34% to 16%. Suggestions are given to further improve the performance of this instrument.

Corresponding author address: Christian Salles, Laboratory for Experimental Geomorphology, Redingenstraat 16, B-3000 Leuven, Belgium.

Email: christian.salles@geo.kuleuven.ac.be

Save
  • Augier, P., 1997: Contribution à l’étude et à la modélisation mécaniste-statistique de la distribution spatiale des apports d’eau sous un canon d’irrigation: Application à la caractérisation des effets du vent sur l’uniformité d’arrosage (Contribution to the study and mechanical-statistical modelization of the water distributed from an irrigation gun: Application to characterize the effects of winds on water application uniformity). Ph.D. dissertation, Ecole Nationale du Génie Rural, des Eaux et des Forêts, Centre de Montpellier, France, 267 pp.

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci.,33, 851–864.

    • Crossref
    • Export Citation
  • Donnadieu, G., 1974: Étude des caractéristiques physiques et radioéléctriques de la pluie à l’aide d’un spectropluviométre photoélectrique. J. Rech. Atmos.,8, 253–266.

  • ——, 1978: Mesure de la vitesse terminale des gouttes de pluie au sol à l’aide du spectromètre VIDIAZ. J. Rech. Atmos.,12, 245–249.

  • ——, 1980: Comparison of results obtained with the VIDIAZ Spectro-Pluviometer and the Joss–Waldvogel rainfall disdrometer in a “rain of a thundery type.” J. Appl. Meteor.,19, 593–597.

    • Crossref
    • Export Citation
  • ——, G. Dubosclard, and S. Godard, 1969: Un pluviomètre photoélectrique pour la détermination simultanée des spectres dimensionnel et de vitesse de chute des gouttes de pluie. J. Rech. Atmos.,4, 37–46.

  • Folland, C. K., 1988: Numerical models of the raingauge exposure problem, field experiments and an improved collector design. Quart. J. Roy. Meteor. Soc.,114, 1485–1516.

    • Crossref
    • Export Citation
  • Hauser, D., P. Amayenc, B. Nutten, and P. Waldteufel, 1984: A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J. Atmos. Oceanic Technol.,1, 256–269.

    • Crossref
    • Export Citation
  • Illingworth, A. J., and C. J. Stevens, 1987: An optical disdrometer for the measurement of raindrop size spectra in windy conditions. J. Atmos. Oceanic Technol.,4, 411–421.

    • Crossref
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein spektrograph für Niederschlagstropfen mit automatischer auswertung (A spectrograph for automatic measurement of raindrops). Geofis. Pura Appl.,68, 240–246.

    • Crossref
    • Export Citation
  • Klaus, V., 1977: Étude d’un spectropluviomètre photoelectrique fournissant en temps réel des paramètres intégrés. Ph.D. dissertation, University of Paris VI, 96 pp. [Available from Université Paris VII, 4 Place Jussieu, 75252 Paris, Cedex 05, France.].

  • Knollenberg, R. G., 1970: The optical array: An alernative to scattering or extinction for airborne particle size determination. J. Appl. Meteor.,9, 86–103.

    • Crossref
    • Export Citation
  • ——, 1976: Three new instruments for cloud physics measurement:The 2D spectrometer, the forward scattering spectrometer probe and the active scattering aerosol spectrometer. Proc. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 544–561.

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrop with size. J. Meteor.,5, 165–166.

    • Crossref
    • Export Citation
  • Picca, B., and G. Trouilhet, 1964: Un pluviogranulomètre photoélectrique (A photoelectric raindrop-size spectrometer). J. Rech. Atmos.,7, 184–188.

  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci.,28, 86–94.

    • Crossref
    • Export Citation
  • Rodda, J. C., 1967: The rainfall measurement problem. Preprints, Conf. on Geochemistry, Precipitation, Evaporation, Soil-moisture, Hydrometry, Bern, Switzerland, AIHS, 215–231.

  • Stow, C. D., and K. Jones, 1981: A self-evaluating disdrometer for the measurement of raindrop size and charge at the ground. J. Appl. Meteor.,20, 1160–1176.

    • Crossref
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor.,24, 580–590.

    • Crossref
    • Export Citation
  • Vastel, F., 1991: Station pluviométrique expérimentale DTG/IMG (An experimental pluviometric station). 36 pp. [Available from Université Montpellier II, ISIM, Place Eugène Bataillon, 34095 Montpellier, France.].

  • Wang, T.-I., K. B. Earnshaw, and R. S. Lawrence, 1979: Path-averaged measurements of rain rate and raindrop size distribution using a fast-response optical sensor. J. Appl. Meteor.,18, 654–660.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 32 5
PDF Downloads 117 21 4