• AATSR Project Document, 1996: Test Report for FM02 FPA Polarization Response. PO-TR-AUS-AT-1013, 21 pp. [Available from RAL, Chilton, Didcot, United Kingdom.].

  • Abel, P., B. Guenther, R. N. Galimore, and J. W. Cooper, 1993: Calibration results for NOAA-11 AVHRR channel-1 and channel-2 from congruent path aircraft observations. J. Atmos. Oceanic Technol.,10, 493–508.

  • Edwards, T., and Coauthors, 1990: The Along-Track Scanning Radiometer measurement of sea-surface temperature from ERS-1. J. Br. Interplanet. Soc.,43, 160–180.

  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt.,12, 555–563.

    • Crossref
    • Export Citation
  • Kieffer, H. H., and R. L. Wildey, 1996: Establishing the moon as a spectral radiance standard. J. Atmos. Oceanic Technol.,13, 360–375.

    • Crossref
    • Export Citation
  • Koelmeijer, R. B. A., P. Stamnes, and P. W. Watts, 1998: Comparison of visible calibration of GOME and ATSR-2. Remote Sens. Environ.,63, 279–288.

    • Crossref
    • Export Citation
  • Kyle, L. H., 1990: The Nimbus-7 Earth Radiation Budget (ERB) data set and its uses. SPIE Proc. 1299 Long-Term Monitoring Earth’s Radiat. Budget,1299, 27–39.

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and, J. S. Garing, 1972: Optical properties of the atmosphere. Rep. AFCRL-72-0497, Air Force Cambridge Research Laboratory, Bedford, MA, 114 pp. [Available from AFRL, 29 Randolph Rd., Hanscom AFB, MA 01731-3010.].

    • Crossref
    • Export Citation
  • Read, P. D, A. L. Hardie, J. E. Magraw, H. S. Taylor, and J. V. Jelley, 1991: A calibration system, using an opal diffuser, for the visual channels of the Along-Track Scanning Radiometer, ATSR-2. Proc. Conf. on Photoelectronic Image Devices, IOP Publishing, 207–213.

  • Ross, D. B., and V. Cardone, 1974: Observations of oceanic white-caps and their relation to remote measurements of surface wind speed. J. Geophys. Res.,79, 444–452.

    • Crossref
    • Export Citation
  • Rothman, L. S., and Coauthors, 1992: The HITRAN molecular database: Editions of 1991 and 1992. J. Quart. Spectrosc. Radiat. Transfer,48, 469–507.

    • Crossref
    • Export Citation
  • Slater, P. N., S. F. Biggar, K. J. Thome, D. I. Gellman, and P. R. Spyak, 1996: Vicarious radiometric calibrations of EOS sensors. J. Atmos. Oceanic Technol.,13, 349–359.

    • Crossref
    • Export Citation
  • Smith, A. H., R. W. Saunders, and A. M. Závody, 1994: The validation of ATSR using aircraft radiometer data. J. Atmos. Oceanic Technol.,11, 789–800.

    • Crossref
    • Export Citation
  • Smith, D. L., 1997: Calibration of the ATSR-2 visible channels using deep convection clouds and desert scenes. Proc. 3rd ERS-1 Symp., Space at the Service of Our Environment, Florence, Italy, European Space Agency, 1629–1633.

  • Vogelmann, J. E., and B. N. Rock, 1988: Assessing forest damage in high-elevation coniferous forests in Vermont and New Hampshire using Thematic Mapper data, 1988. Remote Sens. Environ.,24, 227–246.

    • Crossref
    • Export Citation
  • Watts, P., and A. J. Baran, 1997: A survey of tropical and mid-latitude cirrus particle size and shape using ATSR-2 visible/near infrared data. Proc. 3rd ERS-1 Symp., Space at the Service of Our Environment, Florence, Italy, European Space Agency, 773–778.

  • Wooster, M. J., 1996: In-orbit calibration of the ATSR-1 1.6 μm channel using high-resolution data from the JERS-1 (FUYO-1) optical sensor. Int. J. Remote Sens.,17, 1069–1074.

    • Crossref
    • Export Citation
  • ——, and D. Rothery, 1997: Volcano monitoring using data from the ERS Along-Track Scanning Radiometer. Proc. 3rd ERS-1 Symp., Space at the Service of Our Environment, Florence, Italy, European Space Agency, 481–486.

  • Závody, A. M., M. R. Gorman, D. J. Lee, D. Eccles, C. T. Mutlow, and D. T. Llewellyn-Jones, 1994: The ATSR data processing scheme developed for the EODC. Int. J. Remote Sens.,15, 827–843.

    • Crossref
    • Export Citation
  • ——, C. T. Mutlow, and D. T. Llewellyn-Jones, 1995: A radiative transfer model for sea surface temperature retrieval for the Along-Track Scanning Radiometer (ATSR). J. Geophys. Res.,100, 937–952.

    • Crossref
    • Export Citation
  • Zissis, G. J., Ed., 1993: The Infrared and Electro-Optical Systems Handbook. Vol. 1. Environmental Research Institute of Michigan, 373 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 3
PDF Downloads 10 10 1

A Novel Method for Calibrating the ATSR-2 1.6-μm Channel Using Simultaneous Measurements Made in the 3.7-μm Channel in Sun Glint

View More View Less
  • 1 Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Reflection of the sun’s radiation from the sea surface can give rise to abnormally high brightness temperatures in the 3.7-μm channel of the Along-Track Scanning Radiometer (ATSR-2). Using a radiative transfer model, this effect is used to calibrate the instrument’s 1.6-μm channel by first characterizing the atmosphere with the aid of 11- and 12-μm measurements and then calculating the surface’s effective reflectivity for radiation in the 3.7-μm channel. Scaling of this reflectivity by a factor deduced from the refractive indices of water at 1.6 and 3.7 μm allows, in principle, the calculation of the 1.6-μm channel reflectivity. This can be used directly to give a calibration factor for the 1.6-μm ATSR-2 channel. The polarization sensitivity of the ATSR-2 instrument requires a small correction to be made, and this can be derived by using measurements made in sun-glint areas in both the nadir and the forward views.

Corresponding author address: Albin M. Závody, RAL, Space Science Dept., Chilton, DIDCOT, Oxon OX11 0QX, United Kingdom

Email: albin@atsrsc.rl.ac.uk

Abstract

Reflection of the sun’s radiation from the sea surface can give rise to abnormally high brightness temperatures in the 3.7-μm channel of the Along-Track Scanning Radiometer (ATSR-2). Using a radiative transfer model, this effect is used to calibrate the instrument’s 1.6-μm channel by first characterizing the atmosphere with the aid of 11- and 12-μm measurements and then calculating the surface’s effective reflectivity for radiation in the 3.7-μm channel. Scaling of this reflectivity by a factor deduced from the refractive indices of water at 1.6 and 3.7 μm allows, in principle, the calculation of the 1.6-μm channel reflectivity. This can be used directly to give a calibration factor for the 1.6-μm ATSR-2 channel. The polarization sensitivity of the ATSR-2 instrument requires a small correction to be made, and this can be derived by using measurements made in sun-glint areas in both the nadir and the forward views.

Corresponding author address: Albin M. Závody, RAL, Space Science Dept., Chilton, DIDCOT, Oxon OX11 0QX, United Kingdom

Email: albin@atsrsc.rl.ac.uk

Save