• Batchelor, G. K., 1959: Small-scale variation of convected quantitites like temperature in turbulent fluid. J. Fluid Mech.,5, 113–139.

    • Crossref
    • Export Citation
  • Cox, C., Y. Nagata, and T. Osborn, 1969: Oceanic fine structure and internal waves. Bull. Japan. Soc. Fish. Oceanogr., (Special Issue: Prof. Uda’s Commemorative Papers), 67–71.

  • Dillon, T. M., and D. R. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res.,85, 1910–1916.

    • Crossref
    • Export Citation
  • Fabula, A. G., 1968: The dynamic response of towed thermometer. J. Fluid Mech.,34, 449–464.

    • Crossref
    • Export Citation
  • Gargett, A. E., 1985: Evolution of scalar spectra with the decay of turbulence in a stratified fluid, J. Fluid Mech.,159, 231–280.

    • Crossref
    • Export Citation
  • ——, T. R. Osborn, and P. W. Nasmyth, 1984: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech.,144, 231–280.

    • Crossref
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1975: Space–time scales of internal waves: A progress report. J. Geophys. Res.,80, 291–297.

    • Crossref
    • Export Citation
  • Gregg, M. C., 1977: Variations in the intensity of small-scale mixing in the main thermocline. J. Phys. Oceanogr.,7, 436–454.

    • Crossref
    • Export Citation
  • ——, and W. Hess, 1985: Dynamic response calibration of Sea-Bird temperature and conductivity probes. J. Atmos. Oceanic Technol.,2, 304–313.

    • Crossref
    • Export Citation
  • ——, and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res.,93, 12 381–12 392.

  • ——, T. Meagher, A. Pederson, and E. Aagaard, 1978: Low noise temperature microstructure measurements with thermistors. Deep-Sea Res.,25, 843–856.

    • Crossref
    • Export Citation
  • ——, J. Schedvin, W. Hess, and T. Meagher, 1982: Dynamic response calibration of the Neil Brown conductivity cell. J. Phys. Oceanogr.,12, 720–742.

    • Crossref
    • Export Citation
  • Moum, J. N., M. C. Gregg, R. C. Lien, and M. E. Carr, 1995: Comparison of turbulent kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol.,12, 346–366.

    • Crossref
    • Export Citation
  • Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. thesis, University of British Columbia, 69 pp. [Available from the Department of Physics, University of British Columbia, 2075 Wesbrook Place, Vancouver, BC V6T 1W5, Canada.].

  • Ninnis, R., 1984: The effects of spatial averaging on air-foil probe measurements of oceanic velocity microstructure. Ph.D. thesis, 109 pp. [Available from Department of Oceanography, University of British Columbia, 2075 Wesbrook Place, Vancouver, BC V6T 1W5, Canada.].

  • Oakey, N. S., 1977: An instrument to measure oceanic turbulence and microstructure. Report Series BI-R-77-3, Bedford Institute of Oceanography, Dartmouth, NS, Canada, 52 pp. [Available from the Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada.].

  • ——, 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr.,12, 256–271.

    • Crossref
    • Export Citation
  • Osborn, T. R., 1974: Vertical profiling of velocity microstructure. J. Phys. Oceanogr.,4, 109–115.

    • Crossref
    • Export Citation
  • ——, and W. R. Crawford, 1980: An airfoil probe for measuring turbulent velocity fluctuations in water. Air–Sea Interactions: Instruments and Methods, F. Dobson, L. Hasse, and R. Davis, Eds., Plenum, 369–386.

    • Crossref
    • Export Citation
  • Panchev, S., and D. Kesich, 1969: Energy spectrum of isotropic turbulence at large wavenumbers. Comp. Ren. l’Acad. Bulg. Sci.,22, 627–630.

  • Seim, H. E., M. C. Gregg, and R. Miyamoto, 1995: Acoustic backscatter from turbulent microstructure. J. Atmos. Oceanic Technol.,12, 367–380.

    • Crossref
    • Export Citation
  • Stillinger, D. C., K. N. Helland, and C. W. V. Atta, 1983: Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech.,131, 91–122.

    • Crossref
    • Export Citation
  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science,264, 1120–1123.

    • Crossref
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal Sill in the Strait of Gibraltar. J. Geophys. Res.,99, 9847–9878.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 330 110 13
PDF Downloads 216 139 66

Uncertainties and Limitations in Measuring ε and χT

View More View Less
  • 1 School of Oceanography and Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

Extending the range of microstructure measurements from the upper thermocline of the open ocean to shallow waters near shore and to the abyss has greatly increased in the range of turbulent intensities being observed. As a result, it is necessary to reexamine the adequacy of microstructure probes to resolve dissipation-scale gradients of velocity and temperature. These variances are needed to estimate directly the viscous dissipation rate, ε, with airfoil probes and the diffusive dissipation rate, χT, with thermistors.

Corresponding author address: Dr. Michael C. Gregg, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98105.

Email: gregg@apl.washington.edu

Abstract

Extending the range of microstructure measurements from the upper thermocline of the open ocean to shallow waters near shore and to the abyss has greatly increased in the range of turbulent intensities being observed. As a result, it is necessary to reexamine the adequacy of microstructure probes to resolve dissipation-scale gradients of velocity and temperature. These variances are needed to estimate directly the viscous dissipation rate, ε, with airfoil probes and the diffusive dissipation rate, χT, with thermistors.

Corresponding author address: Dr. Michael C. Gregg, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98105.

Email: gregg@apl.washington.edu

Save