Abstract
A method is studied to make a nonuniform beamfilling (NUBF) correction for the path-integrated attenuation (PIA) derived from spaceborne radar measurement. The key of this method is to estimate rain-rate variability within a radar field of view from the local statistics of a radar-measurable quantity (〈Q〉) such as PIA derived from the surface reference technique. Statistical analyses are made on spatial variabilities of the radar-measurable quantities using a shipborne radar dataset over the tropical Pacific obtained during the TOGA COARE field campaign. It is found that there are reasonably good correlations between the coarse-scale variability of 〈Q〉 and the finescale variability of rain rate, and the regression coefficient (slope) of these two quantities depends somewhat upon rain types. Based on the statistical analyses, the method is tested with a simulation using the same dataset. The test result indicates that this method is effective in reducing bias errors in the estimation of rain-rate statistics. Although it is also effective to make the NUBF correction on an individual instantaneous field-of-view basis, one must account for the variability of local rainfall statistical characteristics that may cause significant errors in the NUBF correction.
Corresponding author address: Dr. Toshiaki Kozu, Department of Electronic and Control Systems Engineering, Shimane University, 1060 Nishi-kawatsu Matsue, Shimane 690-8504, Japan.
Email: kozu@ecs.shimane-u.ac.jp