• Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaels, 1991: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt.,31, 7113–7131.

    • Crossref
    • Export Citation
  • ——, M. Riebesell, and C. Weitkamp, 1992: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett.,15, 746–748.

    • Crossref
    • Export Citation
  • Bevington, P., and D. Robinson, 1992: Data Reduction and Error Analysis for the Physical Sciences. 2d ed. McGraw-Hill, 328 pp.

  • Brutsaert, W., 1982: Evaporation into the Atmosphere. Reidel, 291 pp.

    • Crossref
    • Export Citation
  • Connell, B. H., and D. R. Miller, 1995: An interpretation of radiosonde errors in the atmospheric boundary layer. J. Appl. Meteor.,34, 1070–1081.

    • Crossref
    • Export Citation
  • Cooney, J., 1970: Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J. Appl. Meteor.,9, 182–184.

    • Crossref
    • Export Citation
  • ——, K. Petri, and A. Salik, 1985: Measurements of high resolution atmospheric water-vapor profiles by the use of a solar-blind Raman lidar. Appl. Opt.,24, 104–108.

    • Crossref
    • Export Citation
  • Cooper, D., W. Eichinger, D. Holtkamp, R. Karl Jr., C. Quick, W. Dugas, and L. Hipps, 1992: Spatial variability of water-vapor turbulent transfer within the boundary layer. Bound.-Layer Meteor.,61, 389–405.

    • Crossref
    • Export Citation
  • ——, ——, M. Hynes, C. Keller, C. Lebeda, and D. Poling, 1996: High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations. J. Atmos. Sci.,53, 2054–2075.

    • Crossref
    • Export Citation
  • ——, ——, R. Ecke, J. Kao, J. Reisner, and L. Tellier, 1997: Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar. Geophys. Res. Lett.,24, 45–48.

    • Crossref
    • Export Citation
  • Donovan, D. P., J. A. Whiteway, and A. I. Carswell, 1993: Correction for nonlinear photon-counting effects in lidar systems. Appl. Opt.,32, 6742–6753.

    • Crossref
    • Export Citation
  • Ehret, G., C. Kiemle, W. Renger, and G. Simmet, 1993: Airborne remote sensing of tropospheric water vapor with a near-infrared differential absoprtion lidar system. Appl. Opt.,32, 4534–4551.

    • Crossref
    • Export Citation
  • Eichinger, W., D. Cooper, M. Parlange, and G. Katul, 1993a: The application of a scanning, water-Raman lidar as a probe of the atmospheric boundary layer. IEEE Trans. Geosci. Remote Sens.,31, 70–79.

    • Crossref
    • Export Citation
  • ——, ——, D. Holtkamp, R. Karl Jr., J. Moses, C. Quick, and J. Tiee, 1993b: Derivation of water-vapor fluxes from lidar measurements. Bound.-Layer Meteor.,63, 39–64.

    • Crossref
    • Export Citation
  • Elterman, L., 1964: Atmospheric attenuation model in the ultraviolet, visible, and infrared regions for altitudes to 50 km. AFCRL-68-0153, A. F. Cambridge Research Laboratories, Hanscom Field, MA.

    • Crossref
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmospheric Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res.,101, 3747–3764.

    • Crossref
    • Export Citation
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, and K. D. Evans, 1992:Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November–December 1991. Geophys. Res. Lett.,19, 1599–1602.

    • Crossref
    • Export Citation
  • ——, ——, ——, and ——, 1995: A comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol.,12, 1177–1195.

    • Crossref
    • Export Citation
  • Funck, E., 1986: Dead time effects from linear amplifiers and discriminators in single detector systems. Nucl. Instrum. Methods,A245, 519–524.

    • Crossref
    • Export Citation
  • Grant, W. B., 1991: Differential absorption and Raman lidar for water vapor profile measurements: A review. Opt. Eng.,30, 40–48.

    • Crossref
    • Export Citation
  • Higdon, N. S., and Coauthors, 1994: Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. Appl. Opt.,33, 6422–6438.

    • Crossref
    • Export Citation
  • Hinkley, E. D., Ed., 1976: Laser Monitoring of the Atmosphere. Springer-Verlag, 380 pp.

    • Crossref
    • Export Citation
  • Inaba, H., and T. Kobayasi, 1972: Laser Raman radar—Laser Raman scattering methods for remote detection and analysis of atmospheric pollution. Opto-Electronics,31, 101–123.

    • Crossref
    • Export Citation
  • Klett, J. D., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt.,24, 1609–1624.

    • Crossref
    • Export Citation
  • Knoll, G., 1979: Radiation Detection and Measurement. John Wiley and Sons, 816 pp.

  • Kuettner, J. P., 1993: Central Equatorial Pacific Experiment (CEPEX) experiment design. Center for Clouds, Chemistry, and Climate, Scripps Institution of Oceanography, University of California, San Diego, CA, 54 pp.

  • Measures, R. M., 1984: Laser Remote Sensing. Wiley Interscience, 510 pp.

  • Melfi, S. H., J. D. Lawrence, and M. P. McCormick, 1969: Observation of Raman scattering by water-vapor in the atmosphere. Appl. Phys. Lett.,15, 295–297.

    • Crossref
    • Export Citation
  • ——, D. Whiteman, and R. Ferrare, 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor.,28, 789–806.

    • Crossref
    • Export Citation
  • Mitev, V. M., I. V. Grigorov, and V. B. Simeonov, 1992: Lidar measurements of atmospheric aerosol extinction profiles: A comparison between two techniques—Klett inversion and pure rotational Raman scattering methods. Appl. Opt.,31, 6469–6474.

    • Crossref
    • Export Citation
  • National Oceanic and Atmospheric Administration, 1976: U.S. Standard Atmosphere. National Aeronautic Space Administration, Washington, DC, 227 pp.

  • Post, M. J., and Coauthors, 1997: The combined sensor program: An air–sea science mission in the central and western Pacific Ocean. Bull. Amer. Meteor. Soc.,78, 2797–2815.

    • Crossref
    • Export Citation
  • Renault, D., and R. Capitini, 1988: Boundary-layer water-vapor probing with a solar-blind Raman lidar: Validations, meteorological observations and prospects. J. Atmos. Oceanic Technol.,5, 5–15.

    • Crossref
    • Export Citation
  • ——, C. Pourney, and R. Capitini, 1980: Daytime Raman lidar measurements of water-vapor. Opt. Lett.,5, 232–235.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

    • Crossref
    • Export Citation
  • Teillet, P. M., 1990: Rayleigh optical depth comparisons from various sources. Appl. Opt.,29, 1897–1900.

    • Crossref
    • Export Citation
  • Trakhovsky, E., 1985: Ozone amount determined by transmittance measurements in the solar-blind ultraviolet spectral region. Appl. Opt.,24, 3519–3522.

    • Crossref
    • Export Citation
  • Vaughn, G., D. P. Wareing, L. Thomas, and V. Mitev, 1988: Humidity measurements in the free troposphere using Raman backscatter. Quart. J. Roy. Meteor. Soc.,114, 1471–1484.

    • Crossref
    • Export Citation
  • Whiteman, D. N., S. H. Melfi, and R. A. Ferrare, 1992: Raman lidar system for the measurement of water-vapor and aerosols in the earth’s atmosphere. Appl. Opt.,31, 3068–3082.

    • Crossref
    • Export Citation
  • ——, W. Murphy, N. Walsh, and K. D. Evans, 1993: Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser. Opt. Lett.,18, 247–249.

    • Crossref
    • Export Citation
  • Williams, A. G., and J. M. Hacker, 1993: Interactions between coherent eddies in the lower convective boundary layer. Bound-Layer Meteor.,64, 55–74.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 25 5
PDF Downloads 51 14 2

The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations

View More View Less
  • 1 Iowa Institute for Hydraulic Research, University of Iowa, Iowa City, Iowa
  • | 2 Los Alamos National Laboratory, Los Alamos, New Mexico
Restricted access

Abstract

A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and spatial resolution measurements of the atmosphere within and above the atmospheric boundary layer (ABL). Several examples of the types of data collected and the techniques for processing the data are presented. The typical horizontal range for the lidar is approximately 700 m when scanning, while the vertical range with photon counting can be up to 12 km with corresponding spatial resolutions of 1.5 m in the near field to 75 m in the far field. The uncertainty in the water vapor mixing ratio was found to be ±0.34 g kg−1. The development of the scanning Raman lidar is directed at questions about the behavior of the surface atmosphere interface. These questions address the nature of spatial variability and intermittent microscale convective transport in the ABL and lower troposphere.

Corresponding author address: Dr. W. E. Eichinger, Iowa Institute of Hydraulic Research, 300 Riverside Drive, University of Iowa, Iowa City, IA 52242.

Email: william-eichinger@uiowa.edu

Abstract

A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and spatial resolution measurements of the atmosphere within and above the atmospheric boundary layer (ABL). Several examples of the types of data collected and the techniques for processing the data are presented. The typical horizontal range for the lidar is approximately 700 m when scanning, while the vertical range with photon counting can be up to 12 km with corresponding spatial resolutions of 1.5 m in the near field to 75 m in the far field. The uncertainty in the water vapor mixing ratio was found to be ±0.34 g kg−1. The development of the scanning Raman lidar is directed at questions about the behavior of the surface atmosphere interface. These questions address the nature of spatial variability and intermittent microscale convective transport in the ABL and lower troposphere.

Corresponding author address: Dr. W. E. Eichinger, Iowa Institute of Hydraulic Research, 300 Riverside Drive, University of Iowa, Iowa City, IA 52242.

Email: william-eichinger@uiowa.edu

Save