Application of an Inverse Method to Coastal Modeling

F. Auclair Laboratoire d’Aérologie, UMR CNRS/UPS 5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by F. Auclair in
Current site
Google Scholar
PubMed
Close
,
S. Casitas Laboratoire d’Aérologie, UMR CNRS/UPS 5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by S. Casitas in
Current site
Google Scholar
PubMed
Close
, and
P. Marsaleix Laboratoire d’Aérologie, UMR CNRS/UPS 5560, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by P. Marsaleix in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Free surface coastal models currently suffer from the difficulty of having to specify the global circulation during the initialization process and along the open boundaries. As an alternative to the long spinup periods, an original explicit approach based on inverse techniques has been developed. Data originating from in situ observations and/or ocean general circulation models are optimally interpolated over the small-scale grid in such a way that the tendency terms are reduced to physically consistent values. The errors on the “true” tendencies and the truncated nonlinear term are evaluated to compute the model covariance. The observation covariance matrix is divided into two parts: the homogeneous, isotropic matrix calculated with a global energy spectrum; and a parameterized nonhomogeneous, nonisotropic matrix. The inverse method is applied to the study of the interaction of a barotropic alongshore current over a narrow canyon. The transient processes following the initialization are drastically reduced and the analysis field can efficiently be used in a flow relaxation scheme along the open boundaries.

Corresponding author address: Dr. Francis Auclair, Laboratoire d’Aérologie/Observatoire Midi-Pyrénées, UMR CNRS/UPS 5560, 14, Av. E. Belin, 31400 Toulouse, France.

Abstract

Free surface coastal models currently suffer from the difficulty of having to specify the global circulation during the initialization process and along the open boundaries. As an alternative to the long spinup periods, an original explicit approach based on inverse techniques has been developed. Data originating from in situ observations and/or ocean general circulation models are optimally interpolated over the small-scale grid in such a way that the tendency terms are reduced to physically consistent values. The errors on the “true” tendencies and the truncated nonlinear term are evaluated to compute the model covariance. The observation covariance matrix is divided into two parts: the homogeneous, isotropic matrix calculated with a global energy spectrum; and a parameterized nonhomogeneous, nonisotropic matrix. The inverse method is applied to the study of the interaction of a barotropic alongshore current over a narrow canyon. The transient processes following the initialization are drastically reduced and the analysis field can efficiently be used in a flow relaxation scheme along the open boundaries.

Corresponding author address: Dr. Francis Auclair, Laboratoire d’Aérologie/Observatoire Midi-Pyrénées, UMR CNRS/UPS 5560, 14, Av. E. Belin, 31400 Toulouse, France.

Save
  • Arakawa, A., and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev.,111, 34–45.

    • Crossref
    • Export Citation
  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

    • Crossref
    • Export Citation
  • ——, and P. E. Kloeden, 1978: Boundary conditions for limited area forecasts. J. Atmos. Sci.,35, 990–996.

    • Crossref
    • Export Citation
  • ——, and P. C. McIntosh, 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr.,12, 1004–1018.

    • Crossref
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal circulation model. Three Dimensional Coastal Ocean Models, N. S. Heaps, Ed., Coastal and Estuarine Sciences Series, Vol. 4, Amer. Geophys. Union, 1–16.

    • Crossref
    • Export Citation
  • Bodgen, P. S., P. Malanotte-Rizzoli, and R. Signell, 1996: Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay. J. Geophys. Res.,101 (C3), 6487–6500.

    • Crossref
    • Export Citation
  • Bourke, W., and J. L. Mc Gregor, 1983: A nonlinear vertical mode initialization scheme for a limited area prediction model. Mon. Wea. Rev.,111, 2285–2297.

    • Crossref
    • Export Citation
  • Brasseur, P., 1991: A variational inverse methods for the reconstruction of general circulation fields in the northern Bering Sea. J. Geophys. Res.,96 (C3), 4891–4907.

    • Crossref
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res.,23, 559–582.

    • Crossref
    • Export Citation
  • Brink, K. H., 1982: The effect of bottom friction on low-frequency coastal trapped. J. Phys. Oceanogr.,12, 127–133.

    • Crossref
    • Export Citation
  • Bryan, F. O., C. W. Boning, and W. R. Holland, 1995: On the midlatitude circulation in a high-resolution model of the North Atlantic. J. Phys. Oceanogr.,25, 289–305.

    • Crossref
    • Export Citation
  • Busalacchi, A. J., 1997: Oceanic observations. J. Meteor. Soc. Japan,75, 131–154.

    • Crossref
    • Export Citation
  • Chu, P. C., F. Chenwu, and L. L. Ehret, 1997: Determination of open boundary conditions with an optimization method. J. Atmos. Oceanic Technol.,14, 723–734.

    • Crossref
    • Export Citation
  • Courtier, P., and O. Talagrand, 1990: Variational assimilation of the meteorological observations with the direct and adjoint shallow-water equations. Tellus,42A, 531–549.

    • Crossref
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc.,102, 405–418.

    • Crossref
    • Export Citation
  • Deleersnijder, E., 1989: Upwelling and upsloping in three-dimensional marine models. Appl. Math. Modelling,13, 462–467.

    • Crossref
    • Export Citation
  • De Mey, P., 1997: Data assimilation at the oceanic mesoscale: A review. J. Meteor. Soc. Japan,75, 415–427.

    • Crossref
    • Export Citation
  • Denman, K. L., and H. J. Freeland, 1985: Correlation scales, objective mapping and a statistical test of geostrophy over the continental shelf. J. Mar. Res.,43, 517–539.

    • Crossref
    • Export Citation
  • Engedahl, H., 1995: Use of the flow relaxation scheme in a three-dimensional baroclinic ocean model with realistic topography. Tellus,47A, 365–382.

    • Crossref
    • Export Citation
  • Estournel, C., V. Kondrachoff, P. Marsaleix, and R. Vehil, 1997: The plume of the Rhone: Numerical simulation and remote sensing. Contin. Shelf Res.,17, 899–924.

    • Crossref
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.,99 (C5), 10 143–10 162.

  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Gilbert, J. R., C. Moler, and R. Schreiber, 1992: Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl.,13, 333–356.

    • Crossref
    • Export Citation
  • Gunson, J. R., and P. Malanotte-Rizzoli, 1996: Assimilation studies of open-ocean flows, 1: Estimation of initial and boundary conditions. J. Geophys. Res.,101 (C12), 28 457–28 472.

    • Crossref
    • Export Citation
  • Hinkelmann, K., 1951: Der Mechanimus des meteorologischen Lämes. Tellus,3, 285–296.

    • Crossref
    • Export Citation
  • Horton, C., M. Clifford, J. Schmitz, and L. H. Kantha, 1997: A real-time oceanographic nowcast/forecast system for the Mediterranean Sea. J. Geophys. Res.,102 (C11), 25 123–25 156.

    • Crossref
    • Export Citation
  • Huthnance, J. M., 1995: Circulation, exchange and water masses at the ocean margin: The role for physical processes at the shelf edge. Progress in Oceanography, Vol. 35, Pergamon, 353–431.

    • Crossref
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan,75, 181–189.

    • Crossref
    • Export Citation
  • Klinck, J. M., 1989: Geostrophic adjustment over submarine canyons. J. Geophys. Res.,94 (C5), 6133–6144.

    • Crossref
    • Export Citation
  • ——, 1996: Circulation near submarine canyons: A modeling study. J. Geophys. Res.,101 (C1), 1211–1223.

    • Crossref
    • Export Citation
  • Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus,40A, 85–95.

    • Crossref
    • Export Citation
  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus,38A, 97–110.

    • Crossref
    • Export Citation
  • Le Traon, P. Y., 1990: A method for optimal analysis of fields with spatially variable mean. J. Geophys. Res.,95 (C8), 13 543–13 547.

  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water, with applications to normal mode initialization. Beitr. Phys. Atmos.,50, 253–271.

  • Malanotte-Rizzoli, P., R. E. Young, and D. B. Haidvogel, 1989: Initialization and data assimilation experiments with a primitive equation model. Dyn. Atmos. Oceans,13, 349–378.

    • Crossref
    • Export Citation
  • Marsaleix, P., C. Estournel, V. Kondrachoff, and R. Vehil, 1998: A numerical study of the formation of the Rhône River plume. J. Mar. Res.,14, 99–115.

    • Crossref
    • Export Citation
  • McIntosh, P. C., 1990: Oceanographic data interpolation: Objective analysis and splines. J. Geophys. Res.,95 (C8), 13 529–13 541.

  • Miller, R. N., 1986: Towards the application of the Kalman filter to regional open ocean modeling. J. Phys. Oceanogr.,16, 72–86.

    • Crossref
    • Export Citation
  • Ooyama, K. V., 1987: Scale-controlled objective analysis. Mon. Wea. Rev.,115, 2479–2506.

    • Crossref
    • Export Citation
  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys.,21, 255–261.

    • Crossref
    • Export Citation
  • Provost, C., and R. Salmon, 1986: A variational method for inverting hydrographic data. J. Mar. Res.,44, 1–34.

    • Crossref
    • Export Citation
  • Roisin, B. C., 1994: Introduction to Geophysical Fluid Dynamics. Prentice Hall, 320 pp.

  • Sasaki, Y., 1958: An objective analysis band on the variational method. J. Meteor. Soc. Japan,36, 77–88.

    • Crossref
    • Export Citation
  • Seiler, U., 1993: Estimation of open boundary conditions with the adjoint method. J. Geophys. Res.,98, 22 855–22 870.

    • Crossref
    • Export Citation
  • Spall, M. A., and W. R. Holland, 1991: A nested primitive equation model for oceanic applications. J. Phys. Oceanogr.,21, 205–220.

    • Crossref
    • Export Citation
  • Stevens, D. P., 1990: On open boundary conditions for three-dimensional primitive equation ocean circulation models. J. Geophys. Astrophys. Fluid Dyn.,51, 103–133.

    • Crossref
    • Export Citation
  • Tacker, W. C., and R. B. Long, 1988: Fitting dynamics to data. J. Geophys. Res.,93 (C2), 1227–1240.

    • Crossref
    • Export Citation
  • Tarantola, A., 1988: Inverse Problem Theory. Elsevier, 613 pp.

  • Thiebaux, H. J., and M. A. Pedder, 1987: Spatial Objective Analysis with Applications in Atmospheric Science. Academic Press, 299 pp.

  • Tintore, J., D.-P. Wang, E. Garcia, and A. Viudez, 1995: Near-inertial motions in the coastal ocean. J. Mar. Syst.,6, 301–312.

    • Crossref
    • Export Citation
  • Turner, J. S., 1973: Buoyancy effects in fluids. Mechanics and Applied Mathematics, Cambridge University Press, 367 pp.

  • Wahba, G., and J. Wendelberger, 1980: Some new mathematical methods for variational objective analysis using splines and cross validation. Mon. Wea. Rev.,108, 1122–1143.

    • Crossref
    • Export Citation
  • Washington, W. M., and D. P. Baumhefner, 1974: A method of removing Lamb waves from initial data for primitive equation models. J. Appl. Meteor.,14, 114–119.

    • Crossref
    • Export Citation
  • Woodgate R. A., 1997: The effects of assimilation on the physics of an ocean model. Part II: Baroclinic identical-twin experiments. J. Atmos. Oceanic Technol.,14, 910–924.

    • Crossref
    • Export Citation
  • ——, and P. D. Killworth, 1997: The effects of assimilation on the physics of an ocean model. Part I: Theoretical model and barotropic results. J. Atmos. Oceanic Technol.,14, 897–909.

    • Crossref
    • Export Citation
  • Wunsch, C., 1977: Determining the general circulation of the oceans:A preliminary discussion. Science,196, 871–875.

    • Crossref
    • Export Citation
  • ——, 1996: The Ocean Circulation Problem. Cambridge University Press, 442 pp.

  • Zhang, Q., and J. Marotzke, 1998: The importance of open-boundary estimation for an Indian Ocean GCM—Data synthesis. Center for Global Change Science Rep. No. 56, 57 pp. [Available from Woods Hole Oceanographic Institution, Woods Hole, MA 02548.].

  • Zou, X., I. M. Navon, M. Berger, K. H. Phua, T. Schlick, and F. X. LeDimet, 1993: Numerical experiences with Limited-Memory Quasi-Newton and Truncated Newton Methods. SIAM J. Optimi.,3, 582–608.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 301 91
PDF Downloads 100 22 0