• Anderson, T. L., and Coauthors, 1996: Performance characteristics of a high-sensitivity three-wavelength total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol.,13, 967–986.

    • Crossref
    • Export Citation
  • Blanchard, D. C, A. H. Woodcock, and R. J. Cipriano, 1984: The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii. Tellus,36B, 118–125.

    • Crossref
    • Export Citation
  • Collis, R. T. H., 1966: Lidar: A new atmospheric probe. Quart. J. Roy. Meteor. Soc.,92, 220–230.

    • Crossref
    • Export Citation
  • Daniels, A., 1989: Measurements of atmospheric sea salt concentrations in Hawaii using a Tala kite. Tellus,41B, 196–206.

    • Crossref
    • Export Citation
  • Doherty, S. J., T. L. Anderson, and R. J. Charlson, 1999: Measurement of the lidar ratio for atmospheric aerosols with a 180° backscatter nephelometer. Appl. Opt.,38, 1823–1832.

    • Crossref
    • Export Citation
  • Ferguson, J. A., and D. H. Stephens, 1983: Algorithms for inverting lidar returns. Appl. Opt.,22, 3673–3675.

    • Crossref
    • Export Citation
  • Fernald, F. G., B. M. Herman, and J. A. Reagan, 1972: Determination of aerosol height distribution by lidar. J. Appl. Meteor.,11, 482–489.

    • Crossref
    • Export Citation
  • Hitchfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurements of rainfall at attenuating wavelengths. J. Meteor.,11, 58–67.

    • Crossref
    • Export Citation
  • Hoffmann, D. J., J. T. Peterson, and R. M. Rosson, 1995: Climate Monitoring and Diagnostics Laboratory: Summary Report 1994–1995. NOAA Rep. 23, 161 pp.

  • Hughes, H. G., J. A. Ferguson, and D. H. Stephens, 1985: Sensitivity of lidar inversion algorithm to parameters relating atmospheric backscatter and extinction. Appl. Opt.,24, 1609–1613.

    • Crossref
    • Export Citation
  • Klett, J. D., 1981; Stable analytical inversion solution for processing lidar returns. Appl. Opt.,20, 211–220.

    • Crossref
    • Export Citation
  • Lenoble, J., 1993: Atmospheric Radiative Transfer. Deepak, 532 pp.

  • Lienert, B. R., J. N. Porter, and S. K. Sharma, 1999: Real time analysis and display of scanning lidar scattering data. Mar. Geod.,22, 259–265.

    • Crossref
    • Export Citation
  • Porter, J. N., and A. D. Clarke, 1997: Aerosol size distribution models based on in situ measurements. J. Geophys. Res.,102 (D5), 6035–6045.

    • Crossref
    • Export Citation
  • ——, ——, G. Ferry, and R. Pueschel, 1992; Aircraft studies of size-dependent aerosol sampling through inlets. J. Geophys. Res.,97, 3815–3824.

    • Crossref
    • Export Citation
  • Pruppacher, H. R, and J. D. Klett, 1998: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Reagan, J. A., 1995: New generation lidars to support aerosol radiation/climate forcing studies. Proc. IGARSS95, Florence, Italy, IEEE, 2313–2315.

  • ——, P. M. P. McCormick, and J. D. Spinhirne, 1989: Lidar sensing of aerosols and clouds in the troposphere and stratosphere. Proc. IEEE,77 (3), 433–448.

    • Crossref
    • Export Citation
  • Russell, P. B., T. J. Swissler, and M. P. McCormick, 1979: Methodology for error analysis and simulation of lidar aerosol measurements. Appl. Opt.,18, 3783–3797.

    • Crossref
    • Export Citation
  • Sandford, M. C. W., 1967: Laser scatter measurements in the mesosphere and above. J. Atmos. Terr. Phys.,29, 1657–1662.

    • Crossref
    • Export Citation
  • Shettle, E. P., and R. W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. AFGL-TR-79-0214, 94 pp. [Available from Air Force Geophysics Laboratory, Hanscom AFB, MA 01731.].

  • Spinhirne, J. D., J. A. Reagan, and B. M. Herman, 1980: Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteor.,19, 426–438.

    • Crossref
    • Export Citation
  • Woodcock, A. H., 1953: Salt nuclei in marine air as a function of altitude and wind force. J. Meteor.,10, 362–371.

  • Young, S. A., D. R. Cutten, M. J. Lynch, and J. E. Davies, 1993: Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols. Atmos. Environ.,27, 1541–1555.

    • Crossref
    • Export Citation
  • Zhang, J., and H. Hu, 1997: Lidar calibration: A new method. Appl. Opt.,36, 1235–1238.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 8
PDF Downloads 49 49 1

Using Horizontal and Slant Lidar Measurements to Obtain Calibrated Aerosol Scattering Coefficients from a Coastal Lidar in Hawaii

View More View Less
  • 1 School of Ocean and Earth Science and Technology, Hawaii Institute of Geophysics and Planetology,University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sea salt aerosol concentrations in the clean marine boundary layer can be considered spatially homogeneous when averaged over space and time. Using this assumption, horizontal and slant lidar measurements are carried out at a Hawaii coastal site allowing accurate retrieval of the marine aerosol scattering coefficient. It is found that when the lidar calibration or the aerosol phase function is adjusted so that the derived scattering coefficients are constant with range, then the derived aerosol scattering coefficients are correct and agree with nephelometer measurements (within 25%) and sun photometer (within 7%). Examples of this calibration process are given.

Corresponding author address: Dr. John N. Porter, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822.

Email: jporter@soest.hawaii.edu

Abstract

Sea salt aerosol concentrations in the clean marine boundary layer can be considered spatially homogeneous when averaged over space and time. Using this assumption, horizontal and slant lidar measurements are carried out at a Hawaii coastal site allowing accurate retrieval of the marine aerosol scattering coefficient. It is found that when the lidar calibration or the aerosol phase function is adjusted so that the derived scattering coefficients are constant with range, then the derived aerosol scattering coefficients are correct and agree with nephelometer measurements (within 25%) and sun photometer (within 7%). Examples of this calibration process are given.

Corresponding author address: Dr. John N. Porter, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 2525 Correa Road, Honolulu, HI 96822.

Email: jporter@soest.hawaii.edu

Save