• Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and S. A. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc.,76, 889–904.

    • Crossref
    • Export Citation
  • Boers, R., J. D. Spinhirne, and W. D. Hart, 1988: Lidar observations of the fine-scale variability of marine stratocumulus clouds. J. Appl. Meteor.,27, 797–810.

    • Crossref
    • Export Citation
  • Browell, E. V., 1989: Differential absorption lidar sensing of ozone. Proc. IEEE,77, 419–432.

    • Crossref
    • Export Citation
  • ——, G. L. Gregory, R. C. Harriss, and V. W. J. H. Kirchhoff, 1988:Tropospheric ozone and aerosol distributions across the Amazon Basin. J. Geophys. Res.,93, 1431–1451.

    • Crossref
    • Export Citation
  • Chui, C. K., 1992: An Introduction to Wavelets. Academic Press, 266 pp.

    • Crossref
    • Export Citation
  • Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind profiling radars. J. Appl. Meteor.,39, 1233–1247.

    • Crossref
    • Export Citation
  • ——, S. D. Mayor, C. J. Grund, T. M. Weckwerth, and C. Senff, 1998: The lidars in flat terrain (LIFT) experiment. Bull. Amer. Meteor. Soc.,79, 1329–1343.

    • Crossref
    • Export Citation
  • Cooper, W. A., 1994: Dispersion of smoke plumes from the oil fires of Kuwait. NCAR Tech. Note 402+STR, 73 pp.

  • Daubechies, I., 1992: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, Society for Industrial and Applied Mathematics, 357 pp.

  • Davis, K. J., D. H. Lenschow, S. P. Oncley, C. Kiemle, G. Ehret, A. Giez, and J. Mann, 1997: Role of entrainment in surface–atmosphere interactions over the boreal forest. J. Geophys. Res.,102, 29 219–29 230.

    • Crossref
    • Export Citation
  • Deardorff, J. W., G. W. Willis, and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech.,100, 41–64.

    • Crossref
    • Export Citation
  • Ehret, G., C. Kiemle, W. Renger, and G. Simmet, 1993: Airborne remote sensing of tropospheric water vapor using a near infrared DIAL system. J. Appl. Opt.,32, 4534–4551.

    • Crossref
    • Export Citation
  • ——, A. Giez, C. Kiemle, K. J. Davis, D. H. Lenschow, S. P. Oncley, and R. D. Kelly, 1996: Airborne water vapor DIAL and in situ observations of a sea–land interface. Contrib. Atmos. Phys.,69, 215–228.

  • Foufoula-Georgiou, E., and P. Kumar, 1994: Wavelets in Geophysics. Academic Press, 373 pp.

  • Gamage, N., and C. Hagelberg, 1993: Detection and analysis of microfronts and associated coherent events using localized transforms. J. Atmos. Sci.,50, 750–756.

    • Crossref
    • Export Citation
  • Harriss, R. C., and Coauthors, 1988: Amazon Boundary Layer Experiment (ABLE2A): Dry season 1985. J. Geophys. Res.,93, 1351–1360.

    • Crossref
    • Export Citation
  • Howell, J. F., and L. Mahrt, 1994: An adaptive decomposition: Application to turbulence. Wavelets in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds., Academic Press, 107–126.

    • Crossref
    • Export Citation
  • Kiemle, C., M. Kästner, and G. Ehret, 1995: The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA ’91 campaign. J. Atmos. Oceanic Technol.,12, 771–782.

    • Crossref
    • Export Citation
  • ——, G. Ehret, A. Giez, K. J. Davis, D. H. Lenschow, and S. P. Oncley, 1997: Estimation of boundary-layer humidity fluxes and statistics from airborne DIAL. J. Geophys. Res.,102, 29 189–29 203.

  • ——, ——, and K. Davis, 1998: Airborne lidar studies of the entrainment zone. Proc. 19th Int. Laser Radar Conf., Annapolis, MD, NASA, 395–398.

  • Lenschow, D. H., 1990: Factors affecting the structure and stability of boundary-layer clouds. Preprints, 1990 Conf. on Cloud Physics, San Francisco, CA, Amer. Meteor. Soc., 37–42.

  • Mallat, S., 1989: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process.,37, 2091–2110.

    • Crossref
    • Export Citation
  • ——, and W. L. Hwang, 1992: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory,38, 617–643.

    • Crossref
    • Export Citation
  • ——, and S. Zhong, 1992: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell.,14, 710–732.

    • Crossref
    • Export Citation
  • Mann, J., K. J. Davis, D. H. Lenschow, S. P. Oncley, C. Kiemle, G. Ehret, A. Giez, and H. G. Schreiber, 1995: Airborne observations of the boundary layer top, and associated gravity waves and boundary layer structure. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 113–116.

  • Martin, C. L., D. Fitzjarrald, M. Garstand, A. P. Oliveira, S. Greco, and E. V. Browell, 1988: Structure and growth of the mixing layer over the Amazonian rain forest. J. Geophys. Res.,93, 1361–1376.

    • Crossref
    • Export Citation
  • Measures, R. M., 1984: Laser Remote Sensing: Fundamentals and Applications. John Wiley and Sons, 510 pp.

  • Melfi, S. H., J. D. Spinhirne, S.-H. Chou, and S. P. Palm, 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor.,24, 806–821.

    • Crossref
    • Export Citation
  • Meyer, I., 1993: Wavelets, Algorithms and Applications. Society for Industrial and Applied Mathematics, 133 pp.

  • Piironen, A. K., and E. W. Eloranta, 1995: Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar. J. Geophys. Res.,100, 25 569–25 576.

    • Crossref
    • Export Citation
  • Russell, L. M., D. H. Lenschow, K. K. Laursen, P. B. Krummel, S. T. Siems, A. R. Bundy, D. C. Thornton, and T. S. Bates, 1998:Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res.,103, 16 411–16 432.

    • Crossref
    • Export Citation
  • Schwiesow, R. L., and M. P. Spowart, 1996: The NCAR airborne infrared lidar system: Status and applications. J. Atmos. Oceanic Technol.,13, 4–15.

    • Crossref
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res.,102, 28 731–28 769.

  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci.,55, 3042–3064.

    • Crossref
    • Export Citation
  • Wang, Q., and D. H. Lenschow, 1995: An observational study of the role of penetrating cumulus in a marine stratocumulus-topped boundary layer. J. Atmos. Sci.,52, 2778–2787.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 297 48
PDF Downloads 147 147 8

An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations

View More View Less
  • 1 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota
  • | 2 University Corporation for Atmospheric Research, Boulder, Colorado
  • | 3 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 4 Lidar Group, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
  • | 5 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Wavelet analysis is applied to airborne infrared lidar data to obtain an objective determination of boundaries in aerosol backscatter that are associated with boundary layer structure. This technique allows high-resolution spatial variability of planetary boundary layer height and other structures to be derived in complex, multilayered atmospheres. The technique is illustrated using data from four different lidar systems deployed on four different field campaigns. One case illustrates high-frequency retrieval of the top of a strongly convective boundary layer. A second case illustrates the retrieval of multiple layers in a complex, stably stratified region of the lower troposphere. The method is easily modified to allow for varying aerosol distributions and data quality. Two more difficult cases, data that contain a great deal of instrumental noise and a cloud-topped convective layer, are described briefly. The method is also adaptable to model analysis, as is shown via application to large eddy simulation data.

Corresponding author address: Dr. Kenneth Davis, Department of Meteorology, The Pennsylvania State University, 512 Walker Building, University Park, PA 16802.

Email: davis@essc.psu.edu

Abstract

Wavelet analysis is applied to airborne infrared lidar data to obtain an objective determination of boundaries in aerosol backscatter that are associated with boundary layer structure. This technique allows high-resolution spatial variability of planetary boundary layer height and other structures to be derived in complex, multilayered atmospheres. The technique is illustrated using data from four different lidar systems deployed on four different field campaigns. One case illustrates high-frequency retrieval of the top of a strongly convective boundary layer. A second case illustrates the retrieval of multiple layers in a complex, stably stratified region of the lower troposphere. The method is easily modified to allow for varying aerosol distributions and data quality. Two more difficult cases, data that contain a great deal of instrumental noise and a cloud-topped convective layer, are described briefly. The method is also adaptable to model analysis, as is shown via application to large eddy simulation data.

Corresponding author address: Dr. Kenneth Davis, Department of Meteorology, The Pennsylvania State University, 512 Walker Building, University Park, PA 16802.

Email: davis@essc.psu.edu

Save