• Anderson, S. M., P. Hupalo, and K. Mauersberger, 1993: Ozone absorption cross section measurements in the Wulf bands. Geophys. Res. Lett.,20, 1579–1582.

    • Crossref
    • Export Citation
  • Ansmann, A., M. Riebesell, and C. Weitkamp, 1990: Measurements of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett.,15, 746–748.

    • Crossref
    • Export Citation
  • ——, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis, 1992a: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl. Phys. B,55, 18–28.

    • Crossref
    • Export Citation
  • ——, M. Riebesell, U. Wandinger, C. Weitkamp, and W. Michaelis, 1992b: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt.,29, 3266–3272.

  • ——, and Coauthors, 1993: Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: The 18 October 1989 case study and statistical analysis. J. Appl. Meteor.,32, 1608–1622.

    • Crossref
    • Export Citation
  • Belan, B. D, A. V. El’nikov, V. V. Zuev, V. E. Zuev, E. V. Makienko, and V. N. Marichev, 1992: Results of investigations of the optical and microstructural characteristics of stratospheric aerosol using the method of lidar measurement inversion over Tomsk in summer 1991. Atmos. Oceanic Opt.,5, 373–378.

  • Beyerle, G., R. Neuber, O. Schrems, F. Wittrock, and B. Knudson, 1994: Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93. Geophys. Res. Lett.,21, 57–60.

    • Crossref
    • Export Citation
  • Brackmann, U., 1994: Lambdachrome Laser Dyes. Lambda Physik GmbH, 272 pp.

  • Burkholder, J. B., and R. K. Talukdar, 1994: Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm. Geophys. Res. Lett.,21, 581–584.

    • Crossref
    • Export Citation
  • Burlakov, V. D., A. V. El’nikov, V. V. Zuev, V. N. Marichev, V. L. Pravdin, E. V. Sharabarin, and V. B. Shcheglov, 1992: Multifrequency lidar on the basis of the telescope with the receiving mirror 2.2 m in diameter for simultaneous sounding of vertical distributions of ozone and aerosol in the stratosphere. Atmos. Oceanic Opt.,5, 664–667.

  • Chaikovsky, A. P., I. S. Hutko, A. P. Ivanov, F. P. Osipenko, V. N. Shcherbakov, and S. B. Tauroginskaya, 1994: Multi-wavelength laser sounding of the troposphere over continental regions. Proc. 17th Int. Laser Radar Conf., Sendai, Japan, 87–88.

  • Charlson, R. J., and J. Heintzenberg, Eds., 1995: Aerosol Forcing of Climate. John Wiley, 416 pp.

  • ——, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science,255, 423–430.

    • Crossref
    • Export Citation
  • Clauder, E., 1996: Konzeption und Aufbau einer Strahlseparationseinheit für ein Mehrwellenlängenlidar. Diploma thesis, Universität Leipzig, 62 pp. [Available from Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany.].

  • DelGuasta, M., M. Morandi, L. Stefanutti, and J. P. Wolf, 1994a: Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar. Appl. Opt.,33, 5690–5725.

    • Crossref
    • Export Citation
  • ——, and Coauthors, 1994b: Multiwavelength lidar observation of thin cirrus at the basis of the Pinatubo stratospheric layer during the EASOE campaign. Geophys. Res. Lett.,21, 1339–1342.

    • Crossref
    • Export Citation
  • Deshler, T., B. J. Johnson, and W. R. Rozier, 1993: Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility. Geophys. Res. Lett.,20, 1435–1438.

    • Crossref
    • Export Citation
  • Eloranta, E. W., and P. Piironen, 1997: Measurements of cirrus cloud optical properties and particle size with the University of Wisconsin High Spectral Resolution Lidar. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer, 83–86.

    • Crossref
    • Export Citation
  • Evans, B. T. N., 1987: Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar. Appl. Opt.,27, 3299–3305.

    • Crossref
    • Export Citation
  • Exciton, 1989: Laser Dye Catalog. Exciton Inc., 40 pp.

  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: some comments. Appl. Opt.,23, 652–653.

    • Crossref
    • Export Citation
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, 1998a: Raman lidar measurements of aerosol extinction and backscattering, 1. Methods and comparisons. J. Geophys. Res.,103, 19 663–19 672.

    • Crossref
    • Export Citation
  • ——, ——, ——, ——, and ——, 1998b: Raman lidar measurements of aerosol extinction and backscattering, 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements. J. Geophys. Res.,103, 19 673–19 689.

    • Crossref
    • Export Citation
  • Grund, C. J., and E. W. Eloranta, 1991: The University of Wisconsin High Spectral Resolution Lidar. Opt. Eng.,30, 6–12.

    • Crossref
    • Export Citation
  • Gutkowicz-Krusin, D., 1993: Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering. Appl. Opt.,32, 3266–3272.

    • Crossref
    • Export Citation
  • Hamilton, P. M., 1969: Lidar measurement of backscatter and attenuation of atmospheric aerosol. Atmos. Environ.,3, 221–223.

    • Crossref
    • Export Citation
  • Heintzenberg, J., H. Müller, H. Quenzel, and E. Thomalla, 1981: Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm. Appl. Opt.,20, 1308–1315.

    • Crossref
    • Export Citation
  • ——, H.-F. Graf, R. J. Charlson, and P. Warneck, 1996: Climate forcing and the physico-chemical life cycle of the atmospheric aerosol—Why do we need an integrated interdisciplinary global research program? Contrib. Atmos. Phys.,69, 261–271.

  • Hobbs, P. V., and B. J. Huebert, Eds., 1996: Atmospheric aerosols. A new focus of the International Global Atmospheric Chemistry Project (IGAC). IGAC Core Project Office, Massachusetts Institute of Technology, 40 pp. [Available from IGAC Core Project Office, Building 24-409, Massachusetts Institute of Technology, Cambridge, MA 02139-4307.].

  • Ivanov, A. P., F. P. Osipenko, A. P. Chaikovskiy, and V. N. Shcherbakov, 1986: Study of the aerosol optical properties and microstructure by the method of multiwave sounding. Izv. Atmos. Oceanic Phys.,22, 633–639.

  • Karl, T. R., and Coauthors, 1993: A new perspective on recent global warming. Bull. Amer. Meteor. Soc.,74, 1007–1023.

    • Crossref
    • Export Citation
  • Kiel, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases. Science,260, 311–314.

    • Crossref
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt.,20, 211–220.

    • Crossref
    • Export Citation
  • ——, 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt.,24, 1638–1643.

    • Crossref
    • Export Citation
  • Kolenda, J., and Coauthors, 1992: Aerosol size distribution measurements using a multispectral lidar system. Lidar for Remote Sensing, R. J. Becherer, R. M. Hardesty, and J. P. Meyzonette, Eds., Proc. SPIE,1714, 209–219.

    • Crossref
    • Export Citation
  • Leiterer, U., A. Naebert, T. Naebert, and G. Alekseeva, 1995: A new star photometer developed for spectral aerosol optical thickness measurements in Lindenberg. Contrib. Atmos. Phys.,68, 133–141.

  • Makiyenko, E. V., and I. E. Naats, 1983: Determination of the optical properties of the stratospheric aerosols by multifrequency laser sensing. Izv. Atmos. Oceanic Phys.,19, 748–751.

  • McCormick, P., 1982: Lidar measurements of Mount St. Helens effluents. Opt. Eng.,21, 340–342.

    • Crossref
    • Export Citation
  • McKenzie, R. L., and Coauthors, 1994: Multi-wavelength profiles of aerosol backscatter over Lauder, New Zealand, 24 November 1992. Geophys. Res. Lett.,21, 789–792.

    • Crossref
    • Export Citation
  • Melfi, S. H., J. D. Lawrence, and M. P. McCormick, 1969: Observation of Raman scattering by water vapor in the atmosphere. Appl. Phys. Lett.,15, 295–297.

    • Crossref
    • Export Citation
  • Molina, L. T., and M. J. Molina, 1986: Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res.,91, 14 501–14 508.

    • Crossref
    • Export Citation
  • Müller, D., U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, 1998: Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths. Appl. Opt.,37, 2260–2263.

    • Crossref
    • Export Citation
  • ——, ——, and A. Ansmann, 1999a: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory. Appl. Opt.,38, 2346–2357.

    • Crossref
    • Export Citation
  • ——, ——, and ——, 1999b: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation. Appl. Opt.,38, 2358–2368.

    • Crossref
    • Export Citation
  • ——, F. Wagner, D. Althausen, U. Wandinger, M. Wendisch, A. Keil, and A. Ansmann, 2000: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Experiment. Appl. Opt.,39, 1879–1892.

    • Crossref
    • Export Citation
  • Müller, H., 1981: Die Bestimmbarkeit der atmosphärischen Aerosolgrößenverteilung mit Hilfe eines 4-Wellenlängen-Lidars. Ph.D. dissertation, Wissenschaftliche Mitteilung Nr. 44, Universität München, 99 pp. [Available from Münchener Universitäts-Schriften, Fachbereich Physik, Theresienstr. 37, 80333 München, Germany.].

  • Naats, I. E., 1980: The Theory of Multifrequency Sounding of the Atmosphere (in Russian). Nauka, 157 pp.

  • Ontar Corporation, 1994: HITRAN Optical Spectroscopy Database. ONTAR Corporation, 190 pp. [Available from Ontar Corp., 9 Village Way, North Andover, MA 01845.].

  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosols from biomass burning on the global radiation budget. Science,256, 1432–1434.

    • Crossref
    • Export Citation
  • Piironen, P., and E. W. Eloranta, 1994: Demonstration of a high spectral resolution lidar based on an iodine absorption filter. Opt. Lett.,19, 234–236.

    • Crossref
    • Export Citation
  • Post, M. J., C. J. Grund, A. M. Weickmann, K. R. Healy, and R. J. Willis, 1996: Comparison of Mount Pinatubo and El Chichon volcanic events: Lidar observations at 10.6 and 0.69 μm. J. Geophys. Res.,101, 3929–3940.

  • ——, ——, D. Wang, and T. Deshler, 1997: Evolution of Mount Pinatubo’s aerosol size distributions over the continental United States: Two wavelength lidar retrievals and in situ measurements. J. Geophys. Res.,102, 13 535–13 542.

  • Qing, P., H. Nakane, Y. Sasano, and S. Kitamura, 1989: Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements. Appl. Opt.,28, 5259–5265.

    • Crossref
    • Export Citation
  • Quinn, P. K., and Coauthors, 1996: Closure in tropospheric aerosol-climate research: A review and future needs for addressing aerosol direct shortwave radiative forcing. Contrib. Atmos. Phys.,69, 547–577.

  • Reiter, R., M. Litfaß, M. Carnuth, and W. Funk, 1979: Lidar measurements of concentration and size distribution profiles of tropospheric aerosol. Proc. 9th Int. Laser Radar Conf., Munich, Germany, 82–84.

  • Sasano, Y., and E. V. Browell, 1989: Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Appl. Opt.,28, 1670–1679.

    • Crossref
    • Export Citation
  • ——, ——, and S. Ismail, 1985: Error caused by using a constant extinction/backscatter ratio in the lidar solution. Appl. Opt.,24, 3929–3932.

    • Crossref
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research:A review and current assessment. Bull. Amer. Meteor. Soc.,72, 1848–1866.

    • Crossref
    • Export Citation
  • Schneider, W., G. K. Moortgart, G. S. Tyndall, and J. P. Burrows, 1987: Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K. J. Photochem. Photobiol., A,40, 195–217.

    • Crossref
    • Export Citation
  • Schotland, R. M., K. Sassen, and R. Stone, 1971: Observations by lidar of linear depolarization ratios for hydrometeors. J. Appl. Meteor.,10, 1011–1017.

  • Shipley, S. T., D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation. Appl. Opt.,22, 3717–3724.

  • Sidebottom, H. W., C. C. Badcock, G. E. Jackson, J. G. Calvert, G. W. Reinhardt, and E. K. Damon, 1972: Photooxidation of sulfur dioxide. Environ. Sci. Technol.,6, 72–79.

    • Crossref
    • Export Citation
  • Spinhirne, J. D., S. Chudamani, J. F. Cavanaugh, and J. L. Bufton, 1997: Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar. Appl. Opt.,36, 3475–3490.

  • Sroga, J. T., E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis. Appl. Opt.,22, 3725–3732.

  • Stefanutti, L., and Coauthors, 1992: A four-wavelength depolarization backscattering lidar for polar stratospheric cloud monitoring. Appl. Phys. B,55, 13–17.

    • Crossref
    • Export Citation
  • Stein, B., M. DelGuasta, J. Kolenda, M. Morandi, P. Rairoux, L. Stefanutti, J. P. Wolf, and L. Wöste, 1994: Stratospheric aerosol size measurements at Sodankylä during EASOE. Geophys. Res. Lett.,21, 1311–1314.

    • Crossref
    • Export Citation
  • Uthe, E. E., B. M. Morley, and N. B. Nielsen, 1982: Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size. Appl. Opt.,21, 460–462.

    • Crossref
    • Export Citation
  • Veretennikov, V. V., V. S. Kozlov, I. E. Naats, and V. Ya. Fadeev, 1979: Optical studies of smoke aerosols: an inversion method and its applications. Opt. Lett.,4, 411–413.

    • Crossref
    • Export Citation
  • Wallenhauer, S., 1998: Bestimmung spektraler Streukoeffizienten des atmosphärischen Aerosols aus Lidarmessungen. Diploma thesis, Universität Leipzig, 52 pp. [Available from Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany.].

  • Zuev, V. E., and I. E. Naats, 1983: Inverse Problems of Lidar Sensing of the Atmosphere. Springer, 260 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 243 243 26
PDF Downloads 115 115 26

Scanning 6-Wavelength 11-Channel Aerosol Lidar

View More View Less
  • 1 Institute for Tropospheric Research, Leipzig, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532, 710, 800, and 1064 nm. A beam-combination unit aligns all six laser beams onto one optical axis. Hence the same air volume is observed by all six beams. The combined beam can be directed into the atmosphere from −90° to +90° zenith angle by means of a turnable mirror unit. From the simultaneous detection of the elastic-backscatter signals and of the Raman signals backscattered by nitrogen molecules at 387 and 607 nm and by water vapor molecules at 660 nm, vertical profiles of the six backscatter coefficients between 355 and 1064 nm, of the extinction coefficients, and of the extinction-to-backscatter ratio at 355 and 532 nm, as well as of the water vapor mixing ratio, are determined. The optical thickness between the lidar and a given height can be retrieved for all six transmitted wavelengths from measurements under two different zenith angles. In contrast to sun-radiometer observations, this option allows the resolution of spectral extinction information of each of the aerosol layers present in the vertical. The profile of the depolarization ratio is determined at 710 nm and used to investigate particle shape. A few measurement cases are presented to demonstrate the capabilities of the new lidar.

* Current affiliation: Geneva Technology, Frankfurt, Germany.

+ Current affiliation:PC-Ware Information Technologies AG, Leipzig, Germany.

Corresponding author address: Dr. Dietrich Althausen, Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany.

Email: dietrich@tropos.de

Abstract

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532, 710, 800, and 1064 nm. A beam-combination unit aligns all six laser beams onto one optical axis. Hence the same air volume is observed by all six beams. The combined beam can be directed into the atmosphere from −90° to +90° zenith angle by means of a turnable mirror unit. From the simultaneous detection of the elastic-backscatter signals and of the Raman signals backscattered by nitrogen molecules at 387 and 607 nm and by water vapor molecules at 660 nm, vertical profiles of the six backscatter coefficients between 355 and 1064 nm, of the extinction coefficients, and of the extinction-to-backscatter ratio at 355 and 532 nm, as well as of the water vapor mixing ratio, are determined. The optical thickness between the lidar and a given height can be retrieved for all six transmitted wavelengths from measurements under two different zenith angles. In contrast to sun-radiometer observations, this option allows the resolution of spectral extinction information of each of the aerosol layers present in the vertical. The profile of the depolarization ratio is determined at 710 nm and used to investigate particle shape. A few measurement cases are presented to demonstrate the capabilities of the new lidar.

* Current affiliation: Geneva Technology, Frankfurt, Germany.

+ Current affiliation:PC-Ware Information Technologies AG, Leipzig, Germany.

Corresponding author address: Dr. Dietrich Althausen, Institut für Troposphärenforschung, Permoserstr. 15, 04318 Leipzig, Germany.

Email: dietrich@tropos.de

Save