• Ackerman, S. A., W. L. Smith, J. D. Spinhirne, and H. E. Revercomb, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12-μm window. Mon. Wea. Rev.,118, 2377–2388.

    • Crossref
    • Export Citation
  • Ackerman, T. P., K. N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci.,45, 1606–1623.

    • Crossref
    • Export Citation
  • Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, 1986: AFGL Atmospheric Constituent Profiles (0–120 km). AFGL-TR-86-0110, 43 pp. [Available from Air Force Geophysics Laboratory, Hanscom AFB, MA 01731.].

  • Arnott, W. P., C. Schmitt, Y. Liu, and J. Hallett, 1997: Droplet size spectra and water-vapor concentration of laboratory water clouds: Inversion of Fourier transform infrared (500–5000 cm−1) optical-depth measurement. Appl. Opt.,36, 5205–5216.

    • Crossref
    • Export Citation
  • Aumann, H. H., and R. J. Pagano, 1994: Atmospheric infrared sounder on the earth observing system. Opt. Eng.,33, 776–784.

    • Crossref
    • Export Citation
  • Baran, A. J., S. J. Brown, J. S. Foot, and D. L. Mitchell, 1999: Retrieval of tropical cirrus thermal optical depth, crystal size, and shape using dual-view instrument at 3.7 and 10.8 μm. J. Atmos. Sci.,56, 92–110.

  • Cayla, F.-R., 1993: IASI: Infrared interferometer for operations and research. High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, A. Chedin, M. T. Chahine, and N. A. Scott, Eds., NATO ASI Series I, Vol. 9, Springer-Verlag, 9–19.

    • Crossref
    • Export Citation
  • Clough, S. A., F. X. Kneizys, and E. M. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res.,23, 229–241.

    • Crossref
    • Export Citation
  • ——, M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Applications to water vapor. J. Geophys. Res.,97, 15 761–15 785.

    • Crossref
    • Export Citation
  • Cousin, C., R. Le Doucen, C. Boulet, and A. Henry, 1985: Temperature dependence of the absorption in the region beyond the 4.3-μm band head of CO2. 2: N2 and O2 broadening. Appl. Opt.,24, 3899–3907.

  • Deeter, M. N., and K. F. Evans, 1998: A hybrid Eddington-single scattering radiative transfer model for computing radiances from thermally emitting atmospheres. J. Quant. Spectrosc. Radiat. Transfer,60, 635–648.

    • Crossref
    • Export Citation
  • Downing, H. D., and D. Williams, 1975: Optical constants of water in the infrared. J. Geophys. Res.,80, 1656–1661.

    • Crossref
    • Export Citation
  • Fu, Q., K. N. Liou, M. C. Cribb, T. P. Charlock, and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci.,54, 2799–2812.

    • Crossref
    • Export Citation
  • Gao, B.-C., and W. J. Wiscombe, 1994: Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8–12-μm region. J. Appl. Meteor.,33, 568–570.

    • Crossref
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci.,53, 1649–1662.

    • Crossref
    • Export Citation
  • Han, Q., W. Rossow, R. Welch, A. White, and J. Chou, 1995: Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE. J. Atmos. Sci.,52, 4183–4195.

    • Crossref
    • Export Citation
  • Han, Y., J. A. Shaw, J. H. Churnside, P. D. Brown, and S. A. Clough, 1997: Infrared spectral radiance measurements in the tropical Pacific atmosphere. J. Geophys. Res.,102, 4353–4356.

    • Crossref
    • Export Citation
  • Hansen, J. E., 1971: Multiple scattering of polarized light in planetary atmospheres. Part II: Sunlight reflected by terrestrial water clouds. J. Atmos Sci.,28, 1400–1426.

  • Harshvardhan, and R. C. Espinoza Jr., 1995: Simple parameterizations of the radiative properties of cloud layers: A review. Atmos. Res.,35, 113–125.

    • Crossref
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate,5, 1281–1304.

    • Crossref
    • Export Citation
  • Hui, A. K., B. H. Armstrong, and A. A. Wray, 1978: Rapid computation of the Voigt and complex error functions. J. Quant. Spectrosc. Radiat. Transfer,19, 509–516.

    • Crossref
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci.,33, 2452–2459.

    • Crossref
    • Export Citation
  • Lin, B., P. Minnis, B. Wielicki, D. R. Doelling, R. Palikondra, D. F. Young, and T. Uttal, 1998: Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments. Part 2. Results. J. Geophys. Res.,103, 3887–3905.

    • Crossref
    • Export Citation
  • Liou, K. N., 1973: A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. J. Atmos. Sci.,30, 1303–1326.

    • Crossref
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci.,47, 1878–1893.

  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor.,30, 973–984.

    • Crossref
    • Export Citation
  • Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, R. J. Curran, and T. Styles, 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor.,27, 379–399.

    • Crossref
    • Export Citation
  • Rathke, C., and J. Fischer, 1999: Retrieval of cloud properties from ground-based and airborne FTIR spectrometer measurements. Proc. Int. Geoscience and Remote Sensing Symp., Hamburg, Germany, Institute of Electrical and Electronics Engineers BBC10_06.

  • Rosenkranz, P. W., 1988: Interference coefficients for overlapping oxygen lines in air. J. Quant. Spectrosc. Radiat. Transfer,39, 287–297.

    • Crossref
    • Export Citation
  • Rothman, L. S., and Coauthors, 1998: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer,60, 665–710.

    • Crossref
    • Export Citation
  • Russell, J. E., and J. D. Haigh, 1999: Effect of cloud vertical inhomogeneity on the retrieval of cirrus cloud temperature and infrared optical depth using the ATSR. J. Atmos. Sci.,56, 2601–2612.

    • Crossref
    • Export Citation
  • Smith, W. L., and R. Frey, 1990: On cloud altitude determinations from High Resolution Interferometer Sounder (HIS) observations. J. Appl. Meteor.,29, 658–662.

    • Crossref
    • Export Citation
  • ——, X. L. Ma, S. A. Ackerman, H. E. Revercomb, and R. O. Knuteson, 1993: Remote sensing cloud properties from high spectral resolution infrared observations. J. Atmos. Sci.,50, 1708–1720.

    • Crossref
    • Export Citation
  • Snyder, W. C., Z. Wan, Y. Zhang, and Y.-Z. Feng, 1998: Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens.,19, 2753–2774.

    • Crossref
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt.,27, 2502–2509.

    • Crossref
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990:The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci.,47, 1742–1753.

    • Crossref
    • Export Citation
  • Strow, L. L., D. C. Tobin, and S. E. Hannon, 1994: A compilation of first-order line mixing coefficients for CO2 Q-branches. J. Quant. Spectrosc. Radiat. Transfer,52, 281–294.

    • Crossref
    • Export Citation
  • Thériault, J.-M., P. L. Roney, D. St.-Germain, H. E. Revercomb, R. O. Knuteson, and W. L. Smith, 1994: Analysis of the FASCODE model and its H2O continuum based on long-path atmospheric transmission measurements in the 4.5–11.5-μm region. Appl. Opt.,33, 323–333.

    • Crossref
    • Export Citation
  • Tipping, R. H., and Q. Ma, 1995: Theory of the water vapor continuum and validations. Atmos. Res.,36, 69–94.

    • Crossref
    • Export Citation
  • Toon, O. B., J. B. Pollack, and C. Sagan, 1977: Physical properties of particles composing the great Martian dust storm of 1971–1972. Icarus,30, 663–696.

    • Crossref
    • Export Citation
  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to Planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc.,76, 2125–2153.

    • Crossref
    • Export Citation
  • Wieliczka, D. M., S. Wenig, and M. R. Querry, 1989: Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water. Appl. Opt.,28, 1714–1719.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 6
PDF Downloads 36 36 4

Retrieval of Cloud Microphysical Properties from Thermal Infrared Observations by a Fast Iterative Radiance Fitting Method

View More View Less
  • 1 Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An algorithm is presented for inferring the IR optical depth, effective radius, and liquid water path of clouds from multispectral observations of emitted thermal radiation, which takes advantage of the larger number of spectral channels of future satellite IR sounders. The proposed technique consists of fitting the measured radiances with theoretical results obtained from full radiative transfer simulations, to allow the correct description of vertically inhomogeneous cloud layers. The retrieval is made efficiently treatable by using a fast multiple scattering infrared radiative transfer model and a fast iterative fitting procedure. The theoretical basis of both parts of the algorithm is given in detail, together with the underlying equations. The sensitivity of the method to measurement and modeling errors is investigated systematically from synthetic spectra covering the range of variability of observations of moderately thick, low-water clouds. Instrument absolute calibration errors, as well as uncertainties in the cloud and surface temperatures and in the vertical humidity profile, are identified as major sources of retrieval errors. Taken together, they restrict the application of the algorithm to clouds with an IR optical depth (at 11 μm) ranging between 1 and 4. While the algorithm has, with this, little applicability for water clouds, it should be useful for the retrieval of cirrus cloud and aerosol layer microphysical properties.

Corresponding author address: Carsten Rathke, Institut für Weltraumwissenschaften, Freie Universität Berlin, Fabeckstrasse 69, D-14195 Berlin, Germany.

Email: rathkec@zedat.fu-berlin.de

Abstract

An algorithm is presented for inferring the IR optical depth, effective radius, and liquid water path of clouds from multispectral observations of emitted thermal radiation, which takes advantage of the larger number of spectral channels of future satellite IR sounders. The proposed technique consists of fitting the measured radiances with theoretical results obtained from full radiative transfer simulations, to allow the correct description of vertically inhomogeneous cloud layers. The retrieval is made efficiently treatable by using a fast multiple scattering infrared radiative transfer model and a fast iterative fitting procedure. The theoretical basis of both parts of the algorithm is given in detail, together with the underlying equations. The sensitivity of the method to measurement and modeling errors is investigated systematically from synthetic spectra covering the range of variability of observations of moderately thick, low-water clouds. Instrument absolute calibration errors, as well as uncertainties in the cloud and surface temperatures and in the vertical humidity profile, are identified as major sources of retrieval errors. Taken together, they restrict the application of the algorithm to clouds with an IR optical depth (at 11 μm) ranging between 1 and 4. While the algorithm has, with this, little applicability for water clouds, it should be useful for the retrieval of cirrus cloud and aerosol layer microphysical properties.

Corresponding author address: Carsten Rathke, Institut für Weltraumwissenschaften, Freie Universität Berlin, Fabeckstrasse 69, D-14195 Berlin, Germany.

Email: rathkec@zedat.fu-berlin.de

Save