Fast Temperature and True Airspeed Measurements with the Airborne Ultrasonic Anemometer–Thermometer (AUSAT)

D. Cruette Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by D. Cruette in
Current site
Google Scholar
PubMed
Close
,
A. Marillier Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by A. Marillier in
Current site
Google Scholar
PubMed
Close
,
J. L. Dufresne Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by J. L. Dufresne in
Current site
Google Scholar
PubMed
Close
,
J. Y. Grandpeix Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Search for other papers by J. Y. Grandpeix in
Current site
Google Scholar
PubMed
Close
,
P. Nacass Météo France, CNRM, Centre d’Aviation Météorologique, Bretigny-sur-Orge, France

Search for other papers by P. Nacass in
Current site
Google Scholar
PubMed
Close
, and
H. Bellec Météo France, CNRM, Centre d’Aviation Météorologique, Bretigny-sur-Orge, France

Search for other papers by H. Bellec in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An airborne thermometer–anemometer with fast response is designed and built using the well-known sonic anemometer–thermometer technique. The shape of this new airborne sonic sensor, without the conventional style probes, is a cylinder with its axis colinear to the aircraft’s longitudinal axis. The true airspeed and the air temperature are measured in the same volume. A previous paper described a preliminary version of this sensor and presented data of flight tests obtained on board Météo France’s Cessna 206. This new paper shows an improved sensor and the results obtained on faster aircraft such as the CNRS–INSU’s Fokker 27 and the Météo France’s Merlin IV. First, the sensor and the principle of the measuring method are described, then data collected during several flights from 1996 to 1998 are presented. Although this new thermometer–anemometer is not completely calibrated, it provides mean data very close of those measured by conventional sensors but with a response time 30 times shorter.

Corresponding author address: Dr. Philippe Nacass, Météo France/CNRM/CAM, Aérodrome du CEV, Bâtiment AMOR, F-91228 Brétigny-sur-Orge, France.

Email: philippe.nacass@meteo.fr

Abstract

An airborne thermometer–anemometer with fast response is designed and built using the well-known sonic anemometer–thermometer technique. The shape of this new airborne sonic sensor, without the conventional style probes, is a cylinder with its axis colinear to the aircraft’s longitudinal axis. The true airspeed and the air temperature are measured in the same volume. A previous paper described a preliminary version of this sensor and presented data of flight tests obtained on board Météo France’s Cessna 206. This new paper shows an improved sensor and the results obtained on faster aircraft such as the CNRS–INSU’s Fokker 27 and the Météo France’s Merlin IV. First, the sensor and the principle of the measuring method are described, then data collected during several flights from 1996 to 1998 are presented. Although this new thermometer–anemometer is not completely calibrated, it provides mean data very close of those measured by conventional sensors but with a response time 30 times shorter.

Corresponding author address: Dr. Philippe Nacass, Météo France/CNRM/CAM, Aérodrome du CEV, Bâtiment AMOR, F-91228 Brétigny-sur-Orge, France.

Email: philippe.nacass@meteo.fr

Save
  • Brown, E. N., C. A. Friehe, and D. H. Lenschow, 1983: The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J. Climate Appl. Meteor.,22, 171–180.

    • Crossref
    • Export Citation
  • Etkin, B., 1972: Dynamics of Atmospheric Flight. John Wiley and Sons, 579 pp.

  • Harmer, J., C. G. Kilsby, S. R. Rudman, and J. H. Seymour, 1990: Temperature measurements on the C130, Met Office Working Group Rep., 44 pp. [Available from The Met. Office, Meteorological Research Flight, Bldg. Y46, Farnborough GU-14-OLX, United Kingdom.].

  • Harris, C., 1971: Effects of humidity on the velocity of sound in air. J. Acoust. Soc. Amer.,49, 890–893.

    • Crossref
    • Export Citation
  • Hartman, J., J. Hacher, and H. Kraus, 1990: Correction of data from a salt-spray contaminated temperature sensor, Bound.-Layer Meteor.,50, 153–169.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., J. E. Dye, and C. Biter, 1979: Overestimates of entrainment from wetting of aircraft temperature sensors in cloud. J. Appl. Meteor.,18, 92–95.

    • Crossref
    • Export Citation
  • Khelif, D., S. P. Burns, and C. A. Friehe, 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol.,16, 860–875.

    • Crossref
    • Export Citation
  • Kinsler, L., 1982: Fundamentals of Acoustics. John Wiley and Sons, 480 pp.

  • Knudsen, O., 1948: The attenuation of audible sound in fog and smoke. J. Acoust. Soc. Amer.,20, 849–857.

    • Crossref
    • Export Citation
  • Lawson, R. P., 1988: The measurement of temperature from an aircraft in cloud. Ph.D. thesis, University of Wyoming, 336 pp.

  • Lenschow, D. H., 1986: Probing the atmospheric boundary layer. Amer. Meteor. Soc. 269 pp.

    • Crossref
    • Export Citation
  • ——, and W. T. Pennel, 1974: On the measurement of in cloud and wet bulb temperature from an aircraft. Mon. Wea. Rev.,102, 447–454.

    • Crossref
    • Export Citation
  • Marillier, A., M. Cabane, and D. Cruette, 1991: Preliminary tests of an ultrasonic thermo anemometer for aircraft measurements. J. Atmos. Oceanic Technol.,8, 597–605.

  • Mitsuta, Y., 1966: Sonic anemometer–thermometer for general use. J. Meteor. Res. Japan,44, 12–23.

    • Crossref
    • Export Citation
  • Morera, M., 1995: Essai sur l’influence des différents param&egrave▸es intervenant dans le calcul de la vitesse propre du Merlin-IV. Note de Centre, 15 pp. [Available from Météo France/CNRM/CAM, Aérodrome du CEV, Bâtiment AMOR, F-91228 Brétigny-sur-Orge, France.].

  • Morse, P. M., and K. U. Ingard, 1986: Theoretical Acoustics. Princeton University Press, 927 pp.

  • Nacass, P. L., 1992: Theoretical errors on airborne measurements of static pressure, impact temperature, air flow angle and air flow speed. NCAR Tech. Note 385, 62 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307.].

  • Ovarlez, J., H. C. Cabrita, D. Cadet, and H. Ovarlez, 1978: A balloon-borne sonic anamometer–thermometer. Fourth Symp. on Meteorological Observations and Instrumentations, Denver, CO, Amer. Meteor. Soc., 65–68.

  • Pruppacher, H. R., and J. D. Klett, 1980: Microphysics of clouds and precipitation. D. Reidel, 714 pp.

    • Crossref
    • Export Citation
  • Rosemount Engineering Company, 1965: A general technical bulletin on total temperature sensors. Tech. Rep. 7637 32 pp. [Available from Rosemount Engineering Company, P.O. Box 35129, Minneapolis, MN 55435.].

  • Smith, S. A., and P. Jonas, 1995: Observations of turbulent fluxes in fields of cumulus clouds. Quart. J. Roy. Soc.,121, 1185–1208.

    • Crossref
    • Export Citation
  • Stickney, T. M., M. W. Shedlov, D. I. Thompson, and F. T. Yakos, 1981: Rosemount total temperature sensors. Tech. Rep. 5755, 28 pp. [Available from Rosemount Engineering Company, P.O. Box 35129, Minneapolis, MN 55435.].

  • Suomi, V. E., and J. A. Businger, 1959: Principle of the sonic anemometer–thermometer. Geophys. Res. Paper No. 59, AFCRC-TR-58-235, 673 pp.

  • Villain, J., M. Zephoris, and F. Henaff, 1996: Sonde de mesure rapide de la température. Atelier “Expérimentation et Instrumentation.” Paper I-b7, 111–115. [Available from Méteó France/CNRM, 42 Avenue G. Coriolis, F-31057, Toulouse, France.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 805 176 13
PDF Downloads 546 122 7