• American Society for Testing and Materials, 1998a: Standard test method for calibration of primary non-concentrator terrestrial photovoltaic reference cells using a tabular spectrum. Annual Book of ASTM Standards, Vol. 12.02, Standard E 1125, Amer. Soc. for Testing and Materials, 594–597.

  • ——, 1998b: Standard tables for terrestrial solar spectral irradiance at air mass 1.5 for a 37° tilted surface. Annual Book of ASTM Standards, Vol. 14.02, Standard E 892, Amer. Soc. for Testing and Materials, 577–584.

  • Anderson, G. P., and Coauthors, 1996: Reviewing atmospheric radiative transfer modeling: New developments in high and moderate resolution FASCODE/FASE and MODTRAN. Proc. SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Denver, CO, International Society for Optical Engineering, 82–93.

    • Crossref
    • Export Citation
  • Arvesen, J. C., R. N. Griffin Jr., and B. D. Pearson Jr., 1969: Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Opt.,8, 2215–2232.

  • Bird, R. E., and R. L. Hulstrom, 1982: Precipitable water measurements with sun photometers. J. Appl. Meteor.,21, 1196–1201.

    • Crossref
    • Export Citation
  • ——, and ——, 1983: Reply. J. Climate Appl. Meteor.,22, 1969– 1970.

    • Crossref
    • Export Citation
  • ——, and C. Riordan, 1986: Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Climate Appl. Meteor.,25, 87–97.

    • Crossref
    • Export Citation
  • Clough, S. A., F. X. Kneizys, and R. W. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res.,23, 229–241.

    • Crossref
    • Export Citation
  • Colina, L., R. C. Bohlin, and F. Castelli, 1996: The 0.12–2.5 μm absolute flux distribution of the sun for comparison with solar analog stars. Astron. J.,112, 307–315.

  • Field, H., and K. Emery, 1993: An uncertainty analysis of the spectral correction factor. Proc. 23d IEEE Photovoltaic Specialists Conf., Louisville, KY, Institute of Electrical and Electronic Engineers, 1180–1187.

  • Fröhlich, C., 1977: WMO/PMOD spectrophotometer: Instructions for manufacture. [Available from WMO, 33 Dorf St., Davos Dorf CH-7270, Switzerland.].

  • ——, and J. Lean, 1998: Total solar irradiance variations: The construction of a composite and its comparison with models. Int. Astronomical Union Symp. 185: New Eyes to See Inside the Sun and Stars, Kyoto, Japan, International Astronomical Union, 89– 102.

    • Crossref
    • Export Citation
  • Harkins, A., 1964: The Use of Parallel Tangents in Optimization. Chemical Engineering Progress Symposium Series, Vol. 60, No. 50, American Institute of Chemical Engineers, 81 pp.

  • Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 390 pp.

  • Kasten, F., 1966: A new table and approximate formula for relative optical air mass. Arch. Meteor. Geophys. Bioklimatol.,B14, 206– 223.

    • Crossref
    • Export Citation
  • Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Shelby, R. W. Fenn, and R. A. McClatchy, 1980:Atmospheric transmittance/radiance: Computer code LOWTRAN 5. Air Force Geophysics Lab. Tech. Rep. AFGL-TR-80-0067, 233 pp. [NTIS AD A088215.].

    • Crossref
    • Export Citation
  • ——, ——, ——, ——, ——, ——, S. A. Clough, and R. W. Fenn, 1983: Atmospheric transmittance/radiance: Computer code LOWTRAN 6. Air Force Geophysics Lab. Tech. Rep. AFGL-TR-83-0187, 200 pp. [NTIS AD A137796.].

  • ——, E. P. Shelby, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Shelby, and S. A. Clough, 1988: User’s guide to LOWTRAN 7. Air Force Geophysics Lab. Tech. Rep. AFGL-TR-88-0177, 137 pp. [NTIS AD A206773.].

  • ——, and Coauthors, 1995: The MODTRAN 2/3 and LOWTRAN 7 model report. Modtran Documents, CD-ROM. [Available from Ontar Corp., 9 Village Way, North Andover, MA 01845-2000.].

  • Kurucz, R. L., 1993: ATLAS9 stellar atmosphere programs and km/s grid. Harvard–Smithsonian Center for Astrophysics, CD-ROM, No. 13. [Available from Harvard–Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138.].

  • Myers, D. R., 1989: Estimates of uncertainty for measured spectra in the SERI spectral solar radiation data base. Sol. Energy,43, 347–353.

    • Crossref
    • Export Citation
  • Natrella, M. G., 1966: Experimental Statistics. National Bureau of Standards Handbook 91, 445 pp. [Available from U.S. Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.].

  • Neckel, H., and D. Labs, 1984: The solar radiation between 3300 and 12 500 Å. Sol. Phys.,90, 205–258.

    • Crossref
    • Export Citation
  • Osterwald, C. R., K. A. Emery, D. R. Myers, and C. J. Riordan, 1988:Extending the spectral range of silicon-based direct-beam solar spectral radiometric measurements. Proc. 20th IEEE Photovoltaic Specialists Conf., Las Vegas, NV, Institute of Electrical and Electronic Engineers, 1246–1250.

    • Crossref
    • Export Citation
  • ——, ——, ——, and R. E. Hart, 1990: Primary reference cell calibrations at SERI: History and methods. Proc. 21st IEEE Photovoltaic Specialists Conf., Kissimimee, FL, Institute of Electrical and Electronic Engineers, 1062–1067.

  • Paltridge, G. W., and C. M. R. Platt, 1976: Radiative Processes in Meteorology and Climatology. American Elsevier, 318 pp.

  • Shaw, G. E., 1983: Sun photometry. Bull. Amer. Meteor. Soc.,64, 4–10.

    • Crossref
    • Export Citation
  • Spencer, J. W., 1971: Fourier series representation of the position of the sun. Search,2, 172.

  • Volz, F. E., 1974: Economical multispectral sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water. Appl. Opt.,13, 1732–1733.

  • Walraven, R., 1978: Calculating the position of the sun. Sol. Energy,20, 393–397.

    • Crossref
    • Export Citation
  • Wehrli, C., 1985: Extraterrestrial solar spectrum. Physikalish-Meterologisches Observatorium and World Radiation Center Publication 615, 7 pp. [Available from WMO, 33 Dorf St., Davos Dorf CH-7270, Switzerland.].

  • Wilkinson, B. J., 1981: An improved FORTRAN program for the rapid calculation of the sun position. Sol. Energy,27, 67–68.

    • Crossref
    • Export Citation
  • Woods, T. N., and Coauthors, 1996: Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res.,101, 9541–9569.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 142 6
PDF Downloads 60 60 3

Spectroradiometric Sun Photometry

View More View Less
  • 1 National Renewable Energy Laboratory, Golden, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This paper presents a method for calculating atmospheric transmittance from direct-beam solar spectral irradiance measurements under cloudless skies by treating spectral irradiance as a multichannel sun photometer. Computing the ratio of the measured spectral irradiance to the extraterrestrial spectral irradiance at the top of the atmosphere produces the atmospheric transmittance as a function of wavelength. Individual band absorber amounts and scattering parameters, based on the LOWTRAN 7 atmospheric transmittance model, are then extracted from the transmittance using iterative fitting over wavelength regions where only a few species are active. Using these parameters to extrapolate the entire terrestrial solar spectrum, the wavelength-integrated spectral irradiance is shown to be within 2% of the total irradiance measured with an absolute cavity radiometer. Instrumentation and procedures that have been used with the method at the National Renewable Energy Laboratory since 1987 are described, along with a specific application of the method.

Corresponding author address: K. A. Emery, NREL, 1617 Cole Boulevard, Golden, CO 80401-3393.

Email: keith_Emery@nrel.gov

Abstract

This paper presents a method for calculating atmospheric transmittance from direct-beam solar spectral irradiance measurements under cloudless skies by treating spectral irradiance as a multichannel sun photometer. Computing the ratio of the measured spectral irradiance to the extraterrestrial spectral irradiance at the top of the atmosphere produces the atmospheric transmittance as a function of wavelength. Individual band absorber amounts and scattering parameters, based on the LOWTRAN 7 atmospheric transmittance model, are then extracted from the transmittance using iterative fitting over wavelength regions where only a few species are active. Using these parameters to extrapolate the entire terrestrial solar spectrum, the wavelength-integrated spectral irradiance is shown to be within 2% of the total irradiance measured with an absolute cavity radiometer. Instrumentation and procedures that have been used with the method at the National Renewable Energy Laboratory since 1987 are described, along with a specific application of the method.

Corresponding author address: K. A. Emery, NREL, 1617 Cole Boulevard, Golden, CO 80401-3393.

Email: keith_Emery@nrel.gov

Save