• Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor.,7, 105–113.

    • Crossref
    • Export Citation
  • Caya, D., and I. Zawadzki, 1992: VAD analysis of nonlinear wind fields. J. Atmos. Oceanic Technol.,9, 575–587.

    • Crossref
    • Export Citation
  • Churnside, J. H., and H. T. Yura, 1983: Speckle statistics of atmospherically backscattered laser light. Appl. Opt.,22, 2559–2565.

    • Crossref
    • Export Citation
  • Dabas, A. M., P. Drobinski, and P. H. Flamant, 1998: Chirp induced bias in velocity measurements by a coherent Doppler CO2 lidar. J. Atmos. Oceanic Technol.,15, 407–415.

    • Crossref
    • Export Citation
  • ——, ——, and ——, 1999: Adaptive filters for frequency estimate of heterodyne Doppler lidar returns: Recursive implementation and quality control. J. Atmos. Oceanic Technol.,16, 361–372.

    • Crossref
    • Export Citation
  • Delville, P., C. Loth, P. H. Flamant, D. Bruneau, T. Le Floch, and J. C. Farcy, 1995: A new TE–CO2 laser for coherent lidar and wind applications. Proc. Eighth Coherent Laser Radar Conf., Keystone, CO, OSA, 297–300.

  • Drobinski, P., R. A. Brown, P. H. Flamant, and J. Pelon, 1998: Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Bound.-Layer Meteor.,88, 343– 361.

    • Crossref
    • Export Citation
  • ——, A. M. Dabas, P. Delville, P. H. Flamant, J. Pelon, and R. M. Hardesty, 1999: Refractive-index structure parameter in the planetary boundary layer: Comparison of measurements taken by a 10.6 μm coherent lidar, a 0.9 μm scintillometer, and in situ sensors. Appl. Opt.,38, 1648–1656.

  • ——, ——, and ——, 2000: Remote measurement of turbulent wind spectra by heterodyne Doppler lidar technique. J. Appl. Meteor., in press.

  • Dupont, E., L. Menut, B. Carissimo, J. Pelon, and P. H. Flamant, 1999: Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmos. Environ.,33, 979–994.

    • Crossref
    • Export Citation
  • Flamant, P. H., and Coauthors, 1992: An airborne Doppler lidar for atmospheric applications developed in French-German cooperation. Proc. Specialty Meeting on Airborne Radars and Lidars. Toulouse, France, Météo-France, INSU/CNES, 89–94.

  • Frehlich, R. G., 1993: Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmopsheric signals. IEEE Trans. Geosci. Remote Sens.,31, 1123–1131.

    • Crossref
    • Export Citation
  • ——, and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol.,11, 1217–1230.

    • Crossref
    • Export Citation
  • ——, S. M. Hannon, and S. W. Henderson, 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt.,36, 3491–3499.

    • Crossref
    • Export Citation
  • ——, ——, and ——, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor.,86, 233–256.

    • Crossref
    • Export Citation
  • Kolmogorov, A. N., 1941: Energy dissipation in locally isotropic turbulence. Doklady AN SSSR,32, 19–21.

  • Levin, J. M., 1968: Power spectrum parameter estimation. IEEE Trans. Inf. Theory,11, 100–107.

    • Crossref
    • Export Citation
  • McCready, P. B., 1964: Standardization of gustiness values from aircraft. J. Appl. Meteor.,3, 439–449.

    • Crossref
    • Export Citation
  • Miller, K. S., and R. M. Rochwarger, 1972: A covariance approach to spectral moment estimation. IEEE Trans. Inf. Theory,18, 588–596.

    • Crossref
    • Export Citation
  • Nehorai, A., 1985: A minimal parameter adaptive notch filter with constrained poles and zeros. IEEE Trans. Acoust. Speech, Signal Proc.,ASSP-33, 983–996.

    • Crossref
    • Export Citation
  • Obukhov, A. M., 1941: Energy distribution in the spectrum of a turbulent flow. Izv. AN SSSR, Ser. Geogr. Geofiz., 453–466.

  • Oh, D., P. Drobinski, P. Salamitou, and P. H. Flamant, 1996: Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode. Infrared Phys. Technol.,37, 325–333.

    • Crossref
    • Export Citation
  • Post, M. J., and R. E. Cupp, 1990: Optimizing a pulsed Doppler lidar. Appl. Opt.,29, 4144–4158.

    • Crossref
    • Export Citation
  • Rothermel, J., and Coauthors, 1998: The Multicenter Airborne Coherent Atmospheric Wind Sensor. Bull. Amer. Meteor. Soc.,79, 581–599.

    • Crossref
    • Export Citation
  • Rye, B. J., 1995: Return power estimation for targets spread in range. Coherent Laser Radar, OSA Technical Digest Series, Vol. 19, Optical Society of America, 202–205.

  • ——, and R. M. Hardesty, 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans. Geosci. Remote Sens.,31, 16–27.

    • Crossref
    • Export Citation
  • ——, and ——, 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens.,31, 28–35.

    • Crossref
    • Export Citation
  • ——, and ——, 1997: Detection techniques for validating Doppler estimates in heterodyne lidar. Appl. Opt.,36, 1940–1951.

    • Crossref
    • Export Citation
  • Salamitou, P., A. M. Dabas, and P. H. Flamant, 1995: Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt.,34, 499–506.

    • Crossref
    • Export Citation
  • Schweisow, R. L., and M. P. Sapowart, 1996: The NCAR airborne infrared lidar systems: Status and applications. J. Atmos. Oceanic Technol.,13, 4–15.

    • Crossref
    • Export Citation
  • Willets, D. V., and M. R. Harris, 1982: An investigation into the origin of frequency sweeping in hybrid TEA–CO2 laser. J. Phys. D,15, 51–67.

    • Crossref
    • Export Citation
  • Zarader, J. L., G. Ancellet, A. M. Dabas, N. M’Sirdi, and P. H. Flamant, 1996: Performance of an adaptive notch filter for spectral analysis of coherent lidar signals. J. Atmos. Oceanic Technol.,13, 16–28.

    • Crossref
    • Export Citation
  • Zrnić, D. S., 1979: Estimation of spectral moments of weather echoes. IEEE Trans. Geosci. Electron.,17, 113–128.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 106 106 3
PDF Downloads 12 12 0

Velocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements

View More View Less
  • 1 Météo-France, Centre National de Recherches Météorologiques, Toulouse, France
  • | 2 Laboratoire de Météorologie Dynamique du CNRS, École Polytechnique, Palaiseau, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Frequency estimates by heterodyne Doppler lidar (HDL) may result in velocity bias due to the atmospheric speckle effect and an asymmetrical power spectrum of the probing pulse, as discussed in a previous paper by Dabas et al. In this paper, it has been shown that the velocity bias can be accounted for and corrected on a single measurement basis for a mean frequency estimator (e.g., pulse pair). In the present paper, a new procedure is proposed and validated for adaptive filters (e.g., Levin, notch, etc.), which accounts for nonstationary conditions such as wind turbulence, wind shear, and backscattered power gradient. The present study is conducted using both numerical simulations and actual data taken by a 10-μm HDL.

Corresponding author adress: Dr. Philippe Drobinski, Laboratoire de Météorologie Dynamique du CNRS, École Polytechnique, Palaiseau Cedex 91128, France.

Email: philippe.drobinski@lmd.polytechnique.fr

Abstract

Frequency estimates by heterodyne Doppler lidar (HDL) may result in velocity bias due to the atmospheric speckle effect and an asymmetrical power spectrum of the probing pulse, as discussed in a previous paper by Dabas et al. In this paper, it has been shown that the velocity bias can be accounted for and corrected on a single measurement basis for a mean frequency estimator (e.g., pulse pair). In the present paper, a new procedure is proposed and validated for adaptive filters (e.g., Levin, notch, etc.), which accounts for nonstationary conditions such as wind turbulence, wind shear, and backscattered power gradient. The present study is conducted using both numerical simulations and actual data taken by a 10-μm HDL.

Corresponding author adress: Dr. Philippe Drobinski, Laboratoire de Météorologie Dynamique du CNRS, École Polytechnique, Palaiseau Cedex 91128, France.

Email: philippe.drobinski@lmd.polytechnique.fr

Save