• Abuhassan, N. K., 1995: Développement d’un radiomètre infrarouge multispectral de terrain, et premières applications. Ph.D. thesis, Sciences de la Terre, Université de Paris VI, 147 pp.

  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys.,24, 379–390.

    • Crossref
    • Export Citation
  • Brogniez, G., J. C. Buriez, V. Giraud, F. Parol, and C. Vanbauce, 1995: Determination of effective emittance and a radiatively equivalent microphysical model of cirrus from ground-based and satellite observations during the International Cirrus Experiment:The 18 October 1989 case study. Mon. Wea. Rev.,123, 1025– 1036.

    • Crossref
    • Export Citation
  • Chédin, A., and N. A. Scott, 1991: Observation spatiale du système terre-océan-atmosphère à haute résolution dans l’infrarouge thermique: Perspectives et problèmes. Proc. Fifth Coll. Int. Physical Measurements and Signatures in Remote Sensing, Courchevel, France, CNES, 145–146.

  • Durpaire, J. P., T. Phulpin, and P. Hollier, 1995: IRSUTE a multispectral IR observation instrument on a small satellite. Proc. Coll. Int. SPIE, San Diego, CA, SPIE, 843–852.

    • Crossref
    • Export Citation
  • Fouquart, Y., B. Bonnel, G. Brogniez, J. C. Buriez, L. Smith, J. J. Morcrette, and A. Cerf, 1987: Observations of Saharian aerosols:Results of ECLATS field experiment. Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Climate Appl. Meteor.,26, 38–52.

    • Crossref
    • Export Citation
  • Haeffelin, M., J. R. Mahan, and K. Priestley, 1997: Predicted dynamic electrothermal performance of thermistor bolometer radiometers for earth radiation budget applications. Appl. Opt.,110, 7129– 7142.

    • Crossref
    • Export Citation
  • Hepplewhite, C. L., 1989: Remote observation of the sea surface and atmosphere. The oceanic skin effect. Int. J. Remote Sens.,10, 801–810.

  • Igarashi, T., 1997: The early results from OCTS on board ADEOS. Geocarto Int.,12, 27–34.

    • Crossref
    • Export Citation
  • Jamieson, J. A., R. H. Mc Fee, G. N. Plass, R. H. Grube, and R. G. Richards, 1963. Infrared Physics and Engineering. McGraw-Hill, 673 pp.

  • Kandel, R., and Coauthors, 1998: The ScaRaB earth radiation budget dataset. Bull. Amer. Meteor. Soc.,79, 765–783.

    • Crossref
    • Export Citation
  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens.,30, 2–27.

    • Crossref
    • Export Citation
  • Lorenz, D., 1968: Temperature measurements of natural surfaces using infrared radiometers. Appl. Opt.,7, 1705–1710.

    • Crossref
    • Export Citation
  • Mason, B., and J. Schmetz, 1992: Meteorological satellites. Int. J. Remote Sens.,13, 1153–1172.

    • Crossref
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1971: Optical properties of the atmosphere (revised). AFCRL-71-0279, Environmental Research Paper 354, 85 pp. [Available from Air Force Geophysical Laboratory, LG Hanscom, FIEL, Hanscom AFB, MA 01731.].

    • Crossref
    • Export Citation
  • Mutlow, C. T., A. M. Zàvody, I. J. Barton, and D. T. Llewellyn-Jones, 1994: Sea surface temperature measurements by the along-track scanning radiometer on the ERS-1 satellite: Early results. J. Geophys. Res.,99, 22575–22588.

    • Crossref
    • Export Citation
  • Phulpin, T., and M. Chevrel, 1994: The French space program for Earth observation: Space missions for biosphere studies. Proc. Sixth Coll. Int. Physical Measurements and Signatures in Remote Sensing, Val d’Isère, France, CNES, 1201–1205.

  • Pietras, C., 1996: Développement d’un radiomètre infrarouge thermique multicanal: Qualification du prototype large champ CLIMAT. Ph.D. thesis, Université des Sciences et Technologies de Lille, 178 pp.

  • Platt, C. M. R., 1971: A narrow beam radiometer for atmospheric radiation studies. J. Appl. Meteor.,10, 1307–1313.

  • Saunders, P. M., 1967: Aerial measurement of sea surface temperature in the infrared. J. Geophys. Res.,72, 4109–4117.

    • Crossref
    • Export Citation
  • ——, 1970: Corrections for airborne radiation thermometry. J. Geophys. Res.,75, 7596–7601.

    • Crossref
    • Export Citation
  • Saunders, R. W., and P. J. Minnett, 1990: The measurement of sea surface temperature from C-130. MRF Internal Note 52, 12 pp. [Available from Meteorological Research Flight, Royal Aerospace Establishment, Farnborough, Hampshire GU14 6TD, United Kingdom.].

  • Weiss, M., 1971: Airborne measurements of earth surface temperatures (ocean and land) in the 10–12 μm and 8–14 μm regions. Appl. Opt.,10, 1280–1287.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc.,77, 853–868.

    • Crossref
    • Export Citation
  • Wolfe, W. L., and G. J. Zissis, 1989: The Infrared Handbook. IRIA Center Environmental Research Institute of Michigan, 1668 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 8
PDF Downloads 37 37 3

A High-Accuracy Multiwavelength Radiometer for In Situ Measurements in the Thermal Infrared. Part I: Characterization of the Instrument

View More View Less
  • 1 Laboratoire d’Optique Atmosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
  • | 2 CIMEL Electronique, Paris, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The new infrared radiometer (conveyable low-noise infrared radiometer for measurements of atmosphere and ground surface targets, or CLIMAT) is a highly sensitive field instrument designed to measure brightness temperatures or radiances in the infrared, from the ground level, or from an aircraft. It can be equipped with up to six channels in the 8–14-μm range. This instrument is characterized by its portability (total mass less than 5 kg), its self-sufficiency, and its automated operation. It can be operated either manually or automatically. The optical head of the instrument contains an objective lens and a condenser mounted according to the Köhler design, providing a uniform irradiation on the detector and a well-delimited field of view. The radiation is measured by a low-noise fast thermopile whose responsivity is slightly temperature dependent. The radiometric noise expressed as an equivalent brightness temperature is on the order of 50 mK for a 1-μm bandwidth at room temperature. The application of a thermal shock reveals no noticeable degradation of the measurements, even though the cavity of the thermopile is not stabilized in temperature.

* Current affiliation: GSC–NASA Goddard Space Flight Center, Greenbelt, Maryland.

+ Current affiliation: Virginia Tech/NASA LaRC, Hampton, Virginia.

Corresponding author address: Dr. Michel Legrand, Laboratoire d’Optique Atmosphérique, Université des Sciences et Tech. de Lille, Villeneuve d’Ascq Cedex 59655, France.

Email: michel.legrand@univ-lille1.fr

Abstract

The new infrared radiometer (conveyable low-noise infrared radiometer for measurements of atmosphere and ground surface targets, or CLIMAT) is a highly sensitive field instrument designed to measure brightness temperatures or radiances in the infrared, from the ground level, or from an aircraft. It can be equipped with up to six channels in the 8–14-μm range. This instrument is characterized by its portability (total mass less than 5 kg), its self-sufficiency, and its automated operation. It can be operated either manually or automatically. The optical head of the instrument contains an objective lens and a condenser mounted according to the Köhler design, providing a uniform irradiation on the detector and a well-delimited field of view. The radiation is measured by a low-noise fast thermopile whose responsivity is slightly temperature dependent. The radiometric noise expressed as an equivalent brightness temperature is on the order of 50 mK for a 1-μm bandwidth at room temperature. The application of a thermal shock reveals no noticeable degradation of the measurements, even though the cavity of the thermopile is not stabilized in temperature.

* Current affiliation: GSC–NASA Goddard Space Flight Center, Greenbelt, Maryland.

+ Current affiliation: Virginia Tech/NASA LaRC, Hampton, Virginia.

Corresponding author address: Dr. Michel Legrand, Laboratoire d’Optique Atmosphérique, Université des Sciences et Tech. de Lille, Villeneuve d’Ascq Cedex 59655, France.

Email: michel.legrand@univ-lille1.fr

Save