• Apel, J. R., 1994: An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res.,99, 16269–16291.

    • Crossref
    • Export Citation
  • Atakturk, S. S., and K. B. Katsaros, 1987: Intrinsic frequency spectra of short gravity–capillary waves obtained from temporal measurements of wave height on a lake. J. Geophys. Res.,92, 5131– 5141.

    • Crossref
    • Export Citation
  • Bass, F. G., and I. M. Fuks, 1979: Wave Scattering from Statistically Rough Surfaces. Pergamon, 525 pp.

    • Crossref
    • Export Citation
  • Blanc, T. V., W. J. Plant, and W. C. Keller, 1989: The Naval Research Laboratory’s air–sea interaction blimp experiment. Bull. Amer. Meteor. Soc.,70, 353–365.

    • Crossref
    • Export Citation
  • ——, K. W. Hoppel, and W. J. Plant, 1996: Surface flux measurements made from an airborne sensor platform suspended beneath a blimp. The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., University of Toronto Press, 437–442.

  • Cox, C., and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer.,44, 838–850.

    • Crossref
    • Export Citation
  • Donelan, M. A., and W. J. P. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res.,92, 4971–5029.

    • Crossref
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res.,102, 15781–15796.

    • Crossref
    • Export Citation
  • Fedor, L. S., and V. G. Irisov, 1994: Airborne dual-channel radiometric ocean surface observations during SCOPE’93. Proc. IGARSS’94, Pasadena, CA, IEEE, 2410–2412.

  • ——, E. R. Westwater, and M. J. Falls, 1996: Observations of water vapor and cloud liquid from an airborne dual-frequency radiometer during VORTEX’95. Proc. IGARSS’96, Lincoln, NE, IEEE, 1681–1684.

  • Gasiewski, A. J., and J. R. Piepmeier, 1997: Polarimetric scanning radiometer (PSR) description. Proc. IGARSS’97, Singapore, IEEE, 1006–1008.

  • ——, and Coauthors, 1997: Combined high-resolution active and passive imaging of ocean surface winds from aircraft. Proc. IGARSS’97, Singapore, IEEE, 1001–1005.

  • Genchev, Z. D., 1984: Scattering of electromagnetic waves from a surface with small and shallow inhomogeneies (in Russian). Izv. Vyssh. Uchebn. Zaved., Radiofiz.,27, 48–55.

    • Crossref
    • Export Citation
  • Hara, T., E. J. Bock, and D. Lyzenga, 1994: In situ measurements of capillary–gravity wave spectra using a scanning laser slope gauge and microwave radars. J. Geophys. Res.,99, 12593– 12602.

    • Crossref
    • Export Citation
  • ——, ——, and M. Donelan, 1997: Frequency–wavenumber spectrum of wind-generated gravity–capillary waves. J. Geophys. Res.,102, 1061–1072.

    • Crossref
    • Export Citation
  • ——, ——, J. B. Edson, and W. R. McGillis, 1998: Observation of short wind waves in coastal waters. J. Phys. Oceangr.,28, 1425– 1438.

    • Crossref
    • Export Citation
  • Hare, J. E., and C. W. Fairall, 1998: Bulk meteorological and turbulent flux measurements from R/P FLIP during the Coastal Ocean Probing Experiment. NOAA Tech. Memo. ERL ETL-288, 157 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22061.].

  • Hazen, D. A., W. B. Madsen, and M. D. Jacobson, 1995: Aircraft liquid/vapor radiometer operating at 23.87 GHz and 31.65 GHz. NOAA Tech. Memo. ERL ETL-257, 75 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22061.].

  • Hogg, D. C., F. O. Guiraud, J. B. Snider, M. T. Decker, and E. R. Westwater, 1983: A steerable dual-channel microwave radiometer for measurement of water vapor and liquid in the troposphere. J. Appl. Meteor.,22, 789–806.

    • Crossref
    • Export Citation
  • Hollinger, J. P., 1971: Passive microwave measurements of sea surface roughness. Trans. Geosci. Electron.,9, 165–169.

    • Crossref
    • Export Citation
  • Hwang, P. A., and O. H. Shemdin, 1988: The dependence of sea surface slope on atmospheric stability and swell conditions. J. Geophys. Res.,93, 13903–13912.

    • Crossref
    • Export Citation
  • ——, D. B. Trizna, and J. Wu, 1993: Spatial measurements of short wind waves using a scanning slope sensor. Dyn. Atmos. Oceans,20, 1–23.

    • Crossref
    • Export Citation
  • ——, S. Atakturk, M. A. Sletten, and D. B. Trizna, 1996: A study of the wavenumber spectra of short water waves in the ocean. J. Phys. Oceangr.,26, 1266–1285.

    • Crossref
    • Export Citation
  • Irisov, V. G., 1997: Small-slope expansion for thermal and reflected radiation from a rough surface. Waves Rand. Media,7, 1–10.

    • Crossref
    • Export Citation
  • ——, and Yu. G. Trokhimovski, 1996a: Polarimetric observation of ocean internal waves by microwave radiometers during the Coastal Ocean Probing Experiment. Proc. IGARSS’96, Lincoln, NE, IEEE, 1126–1128.

  • ——, and ——, 1996b: Observation of the ocean brightness temperature anisotropy during the Coastal Ocean Probing Experiment. Proc. IGARSS’96, Lincoln, NE, IEEE, 1457–1459.

  • ——, ——, and V. S. Etkin, 1987a: Radiothermal spectroscopy of the ocean surface. Sov. Phys. Dokl.,32, 914–915.

  • ——, ——, and ——, 1987b: Radiometer methods of ocean diagnostics. Remote Methods of Studying the Ocean (in Russian), E. N. Pelinovsky, Ed., Institute of Applied Physics AN SSSR, 34– 58.

  • Jacobson, M. D., L. S. Fedor, D. A. Hazen, W. B. Madson, M. H. Francis, and D. P. Kremer, 1994: A dual frequency mm-wave radiometer antenna for airborne remote sensing of atmosphere and ocean. Microwave J.,37, 24–38.

  • Jahne, B., and K. S. Riemer, 1990: Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res.,95, 11531–11546.

    • Crossref
    • Export Citation
  • Kawai, S., 1979: Generation of initial wavelets instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech.,93, 661–703.

    • Crossref
    • Export Citation
  • Klein, L. A., and C. T. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag.,25, 104–111.

    • Crossref
    • Export Citation
  • Klinke, J., and B. Jahne, 1992: 2D wave number spectra of short wind waves—Results from wind wave facilities and extrapolation to the ocean. Proc. SPIE,1749, 1–13.

    • Crossref
    • Export Citation
  • Kravtsov, Yu. A., E. A. Mirovskaya, A. E. Popov, I. A. Troitskiy, and V. S. Etkin, 1978: Critical effects in the thermal radiation of a periodically uneven water surface. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys.,14, 522–526.

  • Kropfli, R. A., and S. F. Clifford, 1996: The Coastal Ocean Probing Experiment: Future studies of air–sea interactions with remote and in-situ sensors. Proc. IGARSS’96, Lincoln, NE, IEEE, 1739– 1741.

  • Larson, T. R., and J. W. Wright, 1975: Wind-generated gravity–capillary waves: Laboratory measurements of temporal growth rates using microwave backscatter. J. Fluid Mech.,70, 417–436.

    • Crossref
    • Export Citation
  • Plant, W. J., 1997: A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound, tilted waves. J. Geophys. Res.,102, 21131–21146.

    • Crossref
    • Export Citation
  • ——, W. C. Keller, V. Hesany, and T. V. Blanc, 1996: Ku-band microwave backscatter measurements made from a blimp. The Air– Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., University of Toronto Press, 717–722.

  • Romeiser, R., W. Alpers, and V. Wismann, 1997: An improved composite surface model for the radar backscattering cross section of the ocean surface. Part I: Theory of the model and optimization/validation by scatterometer data. J. Geophys. Res.,102, 25237–25250.

  • Rytov, S. M., Yu. A. Kravtsov, and V. I. Tatarskii, 1989: Elements of Random Fields. Vol. 3, Principles of Statistical Radiophysics, Springer-Verlag, 239 pp.

    • Crossref
    • Export Citation
  • Sasaki, Y., I. Asanuma, K. Muneyama, G. Naito, and T. Suzuki, 1987:The dependance of sea-surface microwave emission on wind speed, frequency, incidence angle and polarization over the frequency range from 1 to 40 GHz. IEEE Trans. Geosci. Remote Sensing,25, 138–146.

    • Crossref
    • Export Citation
  • Shaw, J. A., and J. H. Churnside, 1997a: Scanning-laser glint measurements of sea-surface slope statistics. Appl. Opt.,36, 4202– 4213.

    • Crossref
    • Export Citation
  • ——, and ——, 1997b: Fractal laser glints from the ocean surface. J. Opt. Soc. Amer. A,14, 1144–1150.

    • Crossref
    • Export Citation
  • Stogrin, A., 1967: The apparent temperature of the sea at microwave frequencies. IEEE Trans. Antennas Propag.,15, 278–286.

    • Crossref
    • Export Citation
  • Swift, C. T., 1974: Microwave radiometer measurements of the Cape Cod Canal. Radio Sci.,9, 641–653.

    • Crossref
    • Export Citation
  • Tatarskii, V. I., and V. V. Tatarskii, 1998: Phenomenological statistical non-Gaussian model of sea surface with anisotropic spectrum for wave-scattering theory. NOAA Tech. Memo. ERL ETL-289, 33 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22061.].

  • Trokhimovski, Yu. G., 1997: The model for microwave thermal emission of sea surface with waves. Earth Obs. Remote Sens.,1, 39– 49.

  • ——, E. R. Westwater, V. G. Irisov, and V. Y. Leuskiy, 1995: 5-mm radiometric measurements from FLIP during COPE: A data summary. NOAA Tech. Memo. ERL ETL-258, 56 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22061.].

  • ——, V. G. Irisov, E. R. Westwater, L. S. Fedor, and V. E. Leuski, 2000: Microwave polarimetric measurements of the sea surface brightness temperature from a blimp during the Coastal Ocean Probing Experiment (COPE’95). J. Geophys. Res.,105, 6501– 6516.

    • Crossref
    • Export Citation
  • Valenzuela, G. R., 1976: The growth of gravity–capillary waves in a coupled shear flow. J. Fluid Mech.,76, 229–250.

    • Crossref
    • Export Citation
  • van Gastel, K., P. A. E. M. Jansen, and G. J. Komen, 1985: On phase velocity and growth rate of wind-induced gravity–capillary waves. J. Fluid Mech.,161, 199–216.

    • Crossref
    • Export Citation
  • Voronovich, A. G., 1994: Wave Scattering From Rough Surfaces. Springer Series Wave Phenomenon, Vol. 17, Springer-Verlag, 228 pp.

    • Crossref
    • Export Citation
  • Wentz, F. J., 1975: A two-scale scattering model for foam-free sea microwave brightness temperature. J. Geophys. Res.,80, 3441– 3446.

    • Crossref
    • Export Citation
  • Westwater, E. R., V. G. Irisov, L. S. Fedor, and Y. G. Trokhimovski, 1996: Surface and airborne radiometric observations during the Coastal Ocean Probing Experiment: An overview. Proc. IGARSS’96, Lincoln, NE, IEEE, 1450–1453.

  • ——, Y. Han, V. G. Irisov, V. Y. Leuskiy, Y. G. Trokhimovski, C. W. Fairall, and A. T. Jessup, 1998: Sea–air boundary layer temperatures measured by a scanning 5-mm-wavelength radiometer: Recent results. Radio Sci.,33, 291–302.

    • Crossref
    • Export Citation
  • Wheless, G. H., and G. T. Csandy, 1993: Instability waves on the air–sea interface. J. Fluid Mech.,248, 363–381.

    • Crossref
    • Export Citation
  • Wu, S. T., and A. K. Fung, 1972: A noncoherent model for microwave emission and backscattering from the sea surface. J. Geophys. Res.,77, 5917–5929.

    • Crossref
    • Export Citation
  • Zhang, X., 1995: Capillary–gravity and capillary waves generated in a wind tank: Observations and theories. J. Fluid Mech.,289, 51–82.

    • Crossref
    • Export Citation
  • Zhuk, N. P., O. A. Tret’yakov, I. M. Fuks, and A. G. Yarovoi, 1989:Thermal radio emission of a homogeneous half-space with a rough boundary (in Russian). Izv. Vyssh. Uchebn. Zaved., Radiofiz.,32, 927–932.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 9
PDF Downloads 59 59 7

Gravity–Capillary Wave Curvature Spectrum and Mean-Square Slope Retrieved from Microwave Radiometric Measurements (Coastal Ocean Probing Experiment)

View More View Less
  • 1 NOAA/ERL/Environmental Technology Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Brightness temperature of the sea surface is determined by surface waves of different scales. Polarimetric measurements collected by microwave radiometers at several viewing angles and frequencies give an opportunity to convert the observed brightness temperatures to the mean-square slope of long waves and curvature spectral density in the gravity–capillary interval without a priori assumptions about the shape of spectrum. Such an inversion was made using radiometric data collected during the Coastal Ocean Probing Experiment (COPE’95) from a blimp. It is shown that at low and moderate wind speed conditions typical for COPE’95 (4–7 m s−1) the curvature spectrum has a maximum at wavenumber of about 4.5 rad cm−1, slightly higher than the wavenumber of the phase velocity minimum. The maximum corresponds to the wavenumber with the highest initial growth rate as predicted by theory for the growth rate of wind-induced gravity–capillary waves based on the Orr– Sommerfeld equation. The author’s estimation of the mean-square slope of surface waves is very close to the Cox and Munk values for stable and unstable atmospheric stratification. The radiometric results are compared with several gravity–capillary wave spectral models.

Corresponding author address: Dr. Yuri G. Trokhimovski, NOAA/Environmental Technology Laboratory, R/E/ET1, 325 Broadway, Boulder, CO 80303-3328.

Email: ytrokh@mx.iki.rssi.ru

Abstract

Brightness temperature of the sea surface is determined by surface waves of different scales. Polarimetric measurements collected by microwave radiometers at several viewing angles and frequencies give an opportunity to convert the observed brightness temperatures to the mean-square slope of long waves and curvature spectral density in the gravity–capillary interval without a priori assumptions about the shape of spectrum. Such an inversion was made using radiometric data collected during the Coastal Ocean Probing Experiment (COPE’95) from a blimp. It is shown that at low and moderate wind speed conditions typical for COPE’95 (4–7 m s−1) the curvature spectrum has a maximum at wavenumber of about 4.5 rad cm−1, slightly higher than the wavenumber of the phase velocity minimum. The maximum corresponds to the wavenumber with the highest initial growth rate as predicted by theory for the growth rate of wind-induced gravity–capillary waves based on the Orr– Sommerfeld equation. The author’s estimation of the mean-square slope of surface waves is very close to the Cox and Munk values for stable and unstable atmospheric stratification. The radiometric results are compared with several gravity–capillary wave spectral models.

Corresponding author address: Dr. Yuri G. Trokhimovski, NOAA/Environmental Technology Laboratory, R/E/ET1, 325 Broadway, Boulder, CO 80303-3328.

Email: ytrokh@mx.iki.rssi.ru

Save