Sampling Characteristics of an Aircraft-Borne Aerosol Inlet System

M. Hermann Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by M. Hermann in
Current site
Google Scholar
PubMed
Close
,
F. Stratmann Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by F. Stratmann in
Current site
Google Scholar
PubMed
Close
,
M. Wilck Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by M. Wilck in
Current site
Google Scholar
PubMed
Close
, and
A. Wiedensohler Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by A. Wiedensohler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When sampling aerosol particles from aircraft, the inlet system is the most critical item because it can strongly modify the number concentration, size distribution, and chemical composition of the particles. In this investigation, the authors describe a new aircraft-borne aerosol inlet and its sampling characteristics for submicrometer particle measurements in the upper troposphere and lower stratosphere. The new inlet is flown regularly on board a civil aircraft (Boeing 767 300ER) as part of the CARIBIC project. To investigate the sampling characteristics of the new inlet, a wind-tunnel study has been performed. Furthermore, particle transport losses in the sampling line have been calculated. Combining these results, an overall size-resolved inlet system sampling efficiency is given.

During transport of the aerosol from the ambient environment to the measurement devices inside the aircraft, the aerosol experiences a strong heating within a few tenths of a second. To estimate the effects of this heating on the size distribution of the sampled particles, model calculations have been performed assuming the sampled particles to consist of sulfuric acid and water. The results show that a significant amount of water evaporates from the sampled particles, whereas sulfuric acid evaporation is so slow that it is negligible for particles larger than 4 nm.

Corresponding author address: Markus Hermann, Institute for Tropospheric Research, Permoserstrasse 15, D-04318 Leipzig, Germany.

Abstract

When sampling aerosol particles from aircraft, the inlet system is the most critical item because it can strongly modify the number concentration, size distribution, and chemical composition of the particles. In this investigation, the authors describe a new aircraft-borne aerosol inlet and its sampling characteristics for submicrometer particle measurements in the upper troposphere and lower stratosphere. The new inlet is flown regularly on board a civil aircraft (Boeing 767 300ER) as part of the CARIBIC project. To investigate the sampling characteristics of the new inlet, a wind-tunnel study has been performed. Furthermore, particle transport losses in the sampling line have been calculated. Combining these results, an overall size-resolved inlet system sampling efficiency is given.

During transport of the aerosol from the ambient environment to the measurement devices inside the aircraft, the aerosol experiences a strong heating within a few tenths of a second. To estimate the effects of this heating on the size distribution of the sampled particles, model calculations have been performed assuming the sampled particles to consist of sulfuric acid and water. The results show that a significant amount of water evaporates from the sampled particles, whereas sulfuric acid evaporation is so slow that it is negligible for particles larger than 4 nm.

Corresponding author address: Markus Hermann, Institute for Tropospheric Research, Permoserstrasse 15, D-04318 Leipzig, Germany.

Save
  • Baumgardner, D., and B. Huebert, 1993: The airborne aerosol inlet workshop: Meeting report. J. Aerosol Sci.,24, 835–846.

    • Crossref
    • Export Citation
  • ——, ——, and C. Wilson 1991: Meeting review: Airborne aerosol inlet workshop. NCAR Tech. Note TN-362 + 1A, 288 pp.

  • Brenninkmeijer, C. A. M., and Coauthors, 1999: CARIBIC—Civil aircraft for global measurement of trace gases and aerosols in the tropopause region. J. Atmos. Oceanic Technol.,16, 1373–1383.

    • Crossref
    • Export Citation
  • Cain, S. A., and M. Ram, 1998: Numerical simulation studies of the turbulent airflow through a shrouded airborne aerosol sampling probe and estimation of the minimum sampler transmission efficiency. J. Aerosol Sci.,29, 1145–1156.

    • Crossref
    • Export Citation
  • ——, ——, and S. Woodward, 1998: Qualitative and quantitative wind-tunnel measurements of the airflow through a shrouded airborne aerosol sampling probe. J. Aerosol Sci.,29, 1157–1169.

    • Crossref
    • Export Citation
  • Cheng, Y.-S., and H.-S. Yeh, 1979: Particle bounce in cascade impactors. Environ. Sci. Technol.,13, 1392–1396.

    • Crossref
    • Export Citation
  • ——, and C. S. Wang, 1981: Motion of particles in bends of circular pipes. Atmos. Environ.,15, 301–306.

    • Crossref
    • Export Citation
  • Crane, R. I., and R. L. Evans, 1977: Inertial deposition of particles in a bend pipe. J. Aerosol Sci.,8, 161–170.

  • Driscoll, W. G., and W. Vaughan, Eds., 1978: Handbook of Optics. McGraw-Hill, 1600 pp.

  • Geller, A. S., D. J. Rader, and S. N. Kempka, 1993: Calculation of particle concentration around aircraft-like geometries. J. Aerosol Sci.,24, 823–834.

    • Crossref
    • Export Citation
  • Hindmarsh, A. C., 1983: Odepack, a systemized collection of ODE solvers. IMACS Transaction on Scientific Computing, R. S. Stepleman, Ed., 55–64.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys.,33, 403–439.

    • Crossref
    • Export Citation
  • Hudson, J. G., and P. R. Frisbie, 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res.,96, 20 795–20 908.

    • Crossref
    • Export Citation
  • Huebbert, B. J., G. Lee, and W. L. Warren, 1990: Airborne aerosol inlet passing efficiency measurements. J. Geophys. Res.,95, 16 369–16 381.

    • Crossref
    • Export Citation
  • Innovative Research, 1996: Reference Manual for COMPACT-2D Version 4.0. Innovative Research, Inc.

  • Ivie, J. J., L. J. Forney, and R. L. Roach, 1990: Supersonic particle probes: Measurement of internal wall losses. Aerosol Sci. Technol.,13, 368–385.

    • Crossref
    • Export Citation
  • King, W. D., 1984: Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol.,1, 5–13.

    • Crossref
    • Export Citation
  • ——, 1985: Air flow and particle trajectories around aircraft fuselages. Part III: Extensions to particles of arbitrary shape. J. Atmos. Oceanic Technol.,2, 539–547.

    • Crossref
    • Export Citation
  • ——, 1986: Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol.,3, 433–440.

    • Crossref
    • Export Citation
  • ——, D. E. Turvey, D. Williams, and D. J. Llewellyn, 1984: Air flow and particle trajectories around aircraft fuselages. II: Measurements. J. Atmos. Oceanic Technol.,1, 14–21.

    • Crossref
    • Export Citation
  • Laucks, M. L., and C. H. Twohy, 1998: Size-dependent collection efficiency of an airborne counterflow virtual impactor. Aerosol Sci. Technol.,28, 40–61.

    • Crossref
    • Export Citation
  • Lin, H., and J. Heintzenberg, 1995: A theoretical study of the counterflow virtual impactor. J. Aerosol Sci.,26, 903–914.

    • Crossref
    • Export Citation
  • Mahlman, J. D., 1997: Dynamics of transport processes in the upper troposphere. Science,276, 1079–1083.

    • Crossref
    • Export Citation
  • Marenco, A., and Coauthors, 1998: Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program: An overview. J. Geophys. Res.,103, 25 631–25 642.

    • Crossref
    • Export Citation
  • McFarland, A. R., C. A. Ortiz, M. E. Moore, R. E. DeOette Jr., and S. Somsundaram, 1989: A shrouded aerosol sampling probe. Environ. Sci. Technol.,23, 1487–1492.

    • Crossref
    • Export Citation
  • Murphy, D. M., and M. E. Schein, 1998: Wind-tunnel tests of a shrouded aircraft inlet. Aerosol Sci. Technol.,28, 33–39.

    • Crossref
    • Export Citation
  • Porter, J. N., A. D. Clarke, G. Ferry, and R. F. Pueschel, 1992: Aircraft studies of size-dependent aerosol sampling through inlets. J. Geophys. Res.,97, 3815–3824.

    • Crossref
    • Export Citation
  • Pui, D. Y. H., F. Romay-Novas, and B. Y. H. Liu, 1987: Experimental study of particle deposition in bends of circular cross-section. Aerosol Sci. Technol.,7, 301–315.

    • Crossref
    • Export Citation
  • Radke, L. F., and J. E. Dye, 1991: Aircraft electrical charge: An aerosol inlet issue. NCAR Tech. Note TN-362 + 1A, 288 pp.

  • Ram, M., S. A. Cain, and D. B. Taulbee, 1995: Design of a shrouded probe for airborne aerosol sampling in a high velocity airstream. J. Aerosol Sci.,26, 945–962.

    • Crossref
    • Export Citation
  • Romay, F. J., D. Y. H. Pui, T. J. Smith, N. D. Ngo, and J. H. Vincent, 1996: Corona discharge effects on aerosol sampling efficiency. Atmos. Environ.,30, 2607–2613.

    • Crossref
    • Export Citation
  • Scheibel, H. G., and J. Porstendörfer, 1983: Generation of monodisperse Ag and NaCl aerosols with particle diameters between 2 and 300 nm. J. Aerosol Sci.,14, 113–126.

    • Crossref
    • Export Citation
  • Schmidt-Ott, A., 1988: New approaches to in situ characterization of ultrafine agglomerates. J. Aerosol Sci.,19, 553–563.

    • Crossref
    • Export Citation
  • Schröder, F., and J. Ström, 1997: Aircraft measurements of sub micrometer aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region. Atmos. Res.,44, 333–356.

    • Crossref
    • Export Citation
  • Sheridan, P. J., and R. B. Norton, 1998: Determination of the passing efficiency for aerosol chemical species through a typical aircraft-mounted, diffuser-type aerosol inlet system. J. Geophys. Res.,103, 8215–8225.

    • Crossref
    • Export Citation
  • Soderman, P. T., N. L. Hazen, and W. H. Brune, 1991: On the aerodynamic design of gas and aerosol samplers for aircraft. NCAR Tech. Note TN-362 + 1A, 288 pp.

  • Steele, H. M., and P. Hamill, 1981: Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere. J. Aerosol Sci.,12, 517–528.

    • Crossref
    • Export Citation
  • Torgeson, W. L., and S. C. Stern, 1966: An aircraft impactor for determining the size distributions of tropospheric aerosol. J. Appl. Meteor.,5, 205–210.

    • Crossref
    • Export Citation
  • Twohy, C. H., 1998: Model calculations and wind-tunnel testing of an isokinetic shroud for high-speed sampling. Aerosol Sci. Technol.,29, 261–280.

    • Crossref
    • Export Citation
  • ——, and D. Rogers, 1993: Airflow and water-drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol.,10, 566–578.

  • Weber, R. J., A. D. Clark, M. Litchy, J. Li, G. Kok, R. D. Schillawski, and P. H. McMurry, 1998: Spurious aerosol measurements when sampling from aircraft in the vicinity of clouds. J. Geophys. Res.,103, 28 337–28 346.

    • Crossref
    • Export Citation
  • Wilck, M., 1999: Modal modelling of multicomponent aerosols. Ph.D. thesis, Universität Leipzig, 137 pp. [Available from Martin Wilck, Institute for Tropospheric Research, Permoser Str. 15, D-04318, Leipzig, Germany; also available from martin@tropos.de.].

  • ——, and F. Stratmann, 1997: A 2-D multicomponent aerosol model and its application to laminar flow reactors. J. Aerosol Sci.,28, 959–972.

    • Crossref
    • Export Citation
  • Willeke, K., and P. A. Baron, 1993: Aerosol Measurements: Principles, Techniques and Applications. Van Nostrand Reinhold, 876 pp.

  • Zeleznik, F. J., 1991: Thermodynamic properties of the aqueous sulfuric acid system to 350K. J. Phys. Chem. Ref. Data,20, 1157–1200.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 201 7
PDF Downloads 482 141 3