Determining Turbulent Kinetic Energy Dissipation from Batchelor Curve Fitting

David A. Luketina School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by David A. Luketina in
Current site
Google Scholar
PubMed
Close
and
Jörg Imberger Centre for Water Research, University of Western Australia, Perth, Western Australia, Australia

Search for other papers by Jörg Imberger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An algorithm is presented for obtaining the rate of turbulent kinetic energy dissipation by fitting the theoretical Batchelor spectrum to the temperature gradient spectrum at high wavenumbers. The algorithm is relatively robust in selecting the turbulent Batchelor component from temperature gradient spectra, which have finestructure, internal wave, and noise contributions. The theoretical curve is fitted using an error function that takes into account many of the characteristics of the Batchelor spectrum. Overall, the use of the algorithm to determine dissipation of the turbulent kinetic energy is considerably more time efficient than manual methods. Some limits on the accuracy of the method are also discussed.

Corresponding author address: Dr. David Luketina, Civil Engineering, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand.

Abstract

An algorithm is presented for obtaining the rate of turbulent kinetic energy dissipation by fitting the theoretical Batchelor spectrum to the temperature gradient spectrum at high wavenumbers. The algorithm is relatively robust in selecting the turbulent Batchelor component from temperature gradient spectra, which have finestructure, internal wave, and noise contributions. The theoretical curve is fitted using an error function that takes into account many of the characteristics of the Batchelor spectrum. Overall, the use of the algorithm to determine dissipation of the turbulent kinetic energy is considerably more time efficient than manual methods. Some limits on the accuracy of the method are also discussed.

Corresponding author address: Dr. David Luketina, Civil Engineering, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand.

Save
  • Abramowitz, M., and I. A. Stegun, 1970: Handbook of Mathematical Functions. Dover Publications, 1046 pp.

  • Batchelor, G. K., 1959: Small-scale variations of convected quantities like temperature in turbulent fluid. Part I: General discussion and the case of small conductivity. J. Fluid Mech.,5, 113–133.

    • Crossref
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, 1986: Random Data—Analysis and Measurement Procedures. 2d ed. Wiley-Interscience, 566 pp.

  • De Silva, I. P. D., J. Imberger, and G. I. Ivey, 1997: Localised mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech.,350, 1–27.

    • Crossref
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res.,87 (C12), 9601–9613.

    • Crossref
    • Export Citation
  • ——, and D. R. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res.,85, 1910–1916.

    • Crossref
    • Export Citation
  • Fofonoff, N. P., and R. C. Millard Jr., 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. in Marine Sciences 44, 53 pp.

  • Fozdar, F. M., G. J. Parker, and J. Imberger, 1985: Matching temperature and conductivity sensor response characteristics. J. Phys. Oceanogr.,15, 1557–1569.

    • Crossref
    • Export Citation
  • Gibson, C. H., 1968a: Fine structure of scalar fields mixed by turbulence. Part I: Zero-gradient points and minimal-gradient surfaces. Phys. Fluids,11, 2305–2315.

  • ——, 1968b: Fine structure of scalar fields mixed by turbulence. Part II: Spectral theory. Phys. Fluids,11, 2305–2315.

  • ——, and W. H. Schwartz, 1963: The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech.,16, 365–384.

    • Crossref
    • Export Citation
  • Grant, H. L., B. A. Hughes, W. M. Vogel, and A. Moilliet, 1968: The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech.,34, 423–442.

    • Crossref
    • Export Citation
  • Gregg, M. C., 1977a: A comparison of finestructure spectra from the main thermocline. J. Phys. Oceanogr.,7, 33–40.

    • Crossref
    • Export Citation
  • ——, 1977b: Variations in the intensity of small scale mixing in the main thermocline. J. Phys. Oceanogr.,7, 436–454.

    • Crossref
    • Export Citation
  • ——, 1999: Uncertainty and limitations in measuring ɛ and χT. J. Atmos. Oceanic Technol.,16, 1483–1490.

    • Crossref
    • Export Citation
  • ——, and T. B. Meagher, 1980: The dynamic response of glass rod thermistors. J. Geophys. Res.,85 (C5), 2779–2786.

    • Crossref
    • Export Citation
  • ——, C. S. Cox, and P. W. Hacker, 1973: Vertical microstructure measurements in the central North Pacific. J. Phys. Oceanogr.,3, 458–469.

    • Crossref
    • Export Citation
  • ——, E. A. D’Asaro, T. J. Shay, and N. Larson, 1986: Observations of persistent mixing and near-inertial waves. J. Phys. Oceanogr.,16, 856–884.

    • Crossref
    • Export Citation
  • ——, D. P. Winkel, and T. B. Sanford, 1991: Dissipation and the vertical wavenumber spectra of internal waves in the oceanic thermocline. Preprints, Eighth Conf. on Atmospheric and Oceanic Waves and Stability, Denver, CO, Amer. Meteor. Soc., 257–260.

  • Imberger, J., 1985: The diurnal mixed layer. Limnol. Oceanogr.,30 (4), 737–770.

    • Crossref
    • Export Citation
  • ——, and B. Boashash, 1986: Application of the Wigner–Ville distribution to temperature gradient microstructure: A new technique to study small-scale variations. J. Phys. Oceanogr.,16, 1997–2012.

    • Crossref
    • Export Citation
  • ——, and G. N. Ivey, 1991: On the nature of turbulence in a stratified fluid. Part II: Application to lakes. J. Phys. Oceanogr.,21, 659–679.

    • Crossref
    • Export Citation
  • Ivey, G. N., and J. Imberger, 1991: On the nature of turbulence in a stratified fluid. Part I: The energetics of mixing. J. Phys. Oceanogr.,21, 650–658.

    • Crossref
    • Export Citation
  • Luketina, D. A., 1987: Frontogenesis of freshwater overflows. Ph.D. thesis, University of Western Australia, 139 pp. [Available from Centre for Water Research, University of Western Australia, Perth 6907, Australia.].

  • ——, and J. Imberger, 1989: Turbulence and entrainment in a buoyant surface plume. J. Geophys. Res.,94 (C9), 12 619–12 636.

    • Crossref
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Mechanics. Vol. 2. 3d ed. MIT Press, 874 pp.

    • Crossref
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent kinetic energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr.,12, 256–271.

    • Crossref
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, 1989: Numerical Recipes—The Art of Scientific Computing (FORTRAN Version). Cambridge University Press, 702 pp.

  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol.,17, 1541–1555.

    • Crossref
    • Export Citation
  • Saggio, A., and J. Imberger, 2000: Mixing and turbulent fluxes in the metalimnion of a stratified lake. J. Geophys. Res., in press.

    • Crossref
    • Export Citation
  • Sherman, J. T., and R. E. Davis, 1995: Observations of temperature microstructure in NATRE. J. Phys. Oceanogr.,25, 1913–1929.

    • Crossref
    • Export Citation
  • Stewart, R. W., and H. L. Grant, 1962: Determination of the rate of dissipation of turbulent kinetic energy near the sea surface in the presence of waves. J. Geophys. Res.,67, 3177–3180.

    • Crossref
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London,164A, 476–490.

    • Crossref
    • Export Citation
  • Teoh, S. G., G. I. Ivey, and J. Imberger, 1997: Laboratory study of the interactions between two internal wave rays. J. Fluid Mech.,336, 91–122.

    • Crossref
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 922 319 3
PDF Downloads 395 83 4