• Baumann, R., Busen R. , and Fimpel H. , 1995: Möglichkeiten und Grenzen der Turbulenzmessung mit einem Flugzeug im Bereich von Kondensstreifen. Ann. Meteor, 31 , 408409.

    • Search Google Scholar
    • Export Citation
  • Bögel, W., and Baumann R. , 1991: Test and calibration of the DLR Falcon wind measuring system by maneuvers. J. Atmos. Oceanic Technol, 8 , 518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohne, A. R., Harris F. I. , Tung S. L. , and Smalley D. J. , 1997: Radar studies of aviation hazards. Part 4: Doppler spectrum width analysis. Final Report 26 April 1993–28 May 1997, Phillips Laboratory, Air Force Material Command, Hanscom AFB, MA, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., and Zrnic D. S. , 1986: Comparison of eddy dissipation rates from spatial spectra of Doppler velocities and Doppler spectrum width. J. Atmos. Oceanic Technol, 3 , 440452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chernikov, A. A., Mel'nichuk Yu V. , Pinus N. Z. , Shmeter S. M. , and Vinnichenko N. K. , 1969: Investigations of the turbulence in convective atmosphere using radar and aircraft. Radio Sci, 4 , 12571259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., 1995: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Oceanic Technol, 12 , 8595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Frisch, A. S., and Strauch R. G. , 1976: Doppler radar measurements of turbulent kinetic energy dissipation rates in a northeastern Colorado convective storm. J. Appl. Meteor, 15 , 10121017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Starr D. O'C. , 1995: Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. J. Atmos. Sci, 52 , 41594182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardaker, P. J., and Collier C. G. , 1995: Extracting weather forecast information from polarization and Doppler radar data. COST 75 Weather Radar Systems, C. G. Collier, Ed., European Commission, 440–462.

    • Search Google Scholar
    • Export Citation
  • Harries, F. J., 1978: On the use of windows for harmonic analysis with the discrete Fourier transforms. Proc. IEEE, 66 , 5183.

  • Hauf, T., and Schröder F. , 1998: Supercooled large drops and aircraft icing. Results from research flights in Germany, March 1997. Proc. Eighth Int. Workshop on Atmospheric Icing of Structures, Reykjavik, Iceland.

    • Search Google Scholar
    • Export Citation
  • Höller, H., Finke U. , Huntrieser H. , Hagen M. , and Feigl C. , 1999a:: Lightning produced NOx (LINOX)—Experimental design and case study results. J. Geophys. Res, 104 , . (D11),. 1391113922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höller, H., Laroche P. , Hagen M. , Seltmann J. , and Finke U. , 1999b: Radar and lightning structures in thunderstorms during EULINOX. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 611–612.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., Schlager H. , Feigl C. , and Höller H. , 1998: Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes. J. Geophys. Res, 103 , . (D21),. 2824728264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Istok, J. M., and Doviak R. J. , 1986: Analysis of the relation between Doppler spectral width and thunderstorm turbulence. J. Atmos. Sci, 43 , 21992214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., Clifford S. F. , and Lataitis R. J. , 1989: Effect of finite sampling on atmospheric spectra. Bound.-Layer Meteor, 47 , 337347.

  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk. SSSR, 32 , 1618.

  • Labitt, M., 1981: Coordinated radar and aircraft observations of turbulence. ATC-108, MIT Lincoln Laboratory, Lexington, MA, 40 pp.

  • Meischner, P. F., 1989: Observations of dynamical and microphysical aspects related to hail formation with the polarimetric Doppler radar Oberpfaffenhofen. Theor. Appl. Meteor, 40 , 209226.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., Bringi V. N. , Heimann D. , and Höller H. , 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev, 119 , 678701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, W., and Jank T. , 1989: Dopplerspektren aus inkohärenter Rückstreuung, Prinzip und Anwendungsbeispiele. Rep. DLR-FB 89-48, 58 pp. [English translation: Rep. ESA-TT-1197.].

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., Miller L. J. , Vaughan R. L. , and Frank H. W. , 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol, 3 , 144161.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Yaglom A. M. , 1975: Mechanics of Turbulence. Vol. 2, Statistical Fluid Mechanics, The MIT Press, 874 pp.

  • Oguchi, T., 1983: Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE, 71 , 10291078.

  • Paluch, I. R., and Baumgardner D. G. , 1989: Entrainment and fine-scale mixing in a continental convective cloud. J. Atmos. Sci, 46 , 261278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and Dutton J. A. , 1984: Atmospheric Turbulence. J. Wiley and Sons, 397 pp.

  • Passarelli, R. E., and Siggia A. D. , 1983: The autocorrelation function and Doppler spectral moments: Geometric and asymtotic interpretations. J. Appl. Meteor, 22 , 17761787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinski, M., and Khain A. , 1997: Formation of inhomogeneity in drop concentration induced by the inertia of drops falling in a turbulent flow, and the influence of the inhomogeneity on the drop-spectrum broadening. Quart. J. Roy. Meteor. Soc, 123 , 165186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pobanz, B. M., Marwitz J. D. , and Politovich M. K. , 1994: Conditions associated with large-drop regions. J. Appl. Meteor, 33 , 13661372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quante, M., Brown P. R. A. , Baumann R. , Guillemet B. , and Hignett P. , 1996: Three aircraft intercomparision of dynamical and thermodynamical measurements during the ‘Pre-EUCREX’ campaign. Beitr. Phys. Atmos, 69 , 129146.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1979: A Short Course in Cloud Physics. Pergamon Press, 235 pp.

  • Schroth, A. C., Chandra M. S. , and Meischner P. F. , 1988: A C-band coherent polarimetric radar for propagation and cloud physics research. J. Atmos. Oceanic Technol, 5 , 803822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., Reade W. C. , Collins L. R. , and Verlinde J. , 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci, 55 , 19651976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., and Atlas D. , 1974: Effect of finite radar pulse volume on turbulence measurements. J. Appl. Meteor, 13 , 472480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., Jameson A. R. , and Hildebrand P. H. , 1979: Time-domain computation of mean and variance of Doppler spectra. J. Appl. Meteor, 18 , 189194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw Hill, 285 pp.

  • Zrnic, D. S., 1979: Spectral width estimates of weather echoes. IEEE Trans. Aerosp. Electron. Syst, AES-15 , 613619.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 299 270 3
PDF Downloads 104 76 6

Eddy Dissipation Rates in Thunderstorms Estimated by Doppler Radar in Relation to Aircraft In Situ Measurements

View More View Less
  • 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

High-resolution aircraft turbulence measurements, well coordinated with radar Doppler spectral width measurements, have been used to verify radar-estimated energy dissipation rates within thunderstorms anvils. The radar-estimated eddy dissipation rates have been carefully interpolated in time and space to the aircraft position. From the aircraft measurements, turbulence was estimated using a three-component averaged structure function D(r). The sensitivity of this structure function to r, to wind components selected, and to the sampling rate was investigated. Power spectra for all three wind components have been derived for selected flight sections. Differences between these three spectra and deviations from the k−5/3 law indicate areas of energy input. At areas where all three spectra follow the k−5/3 law, indicating the inertial subrange of turbulence, both estimates of the energy dissipation rate by aircraft and radar agree rather well. On average an overestimation of the dissipation rate by radar in comparison to the aircraft measurements is found, especially for weaker storm cells and in the case of strong shear. The estimated energy dissipation spans a range from some 10−6 m2 s−3 to 5 × 10−2 m2 s−3. The lower limit detectable with the C-band Doppler radar used, representing operational C-band Doppler weather radar systems, is about 10−3 m2 s−3. Closer agreement between radar and aircraft estimates has been found for the variances. Doppler spectrum width as measured by operational weather radars and indicative for both turbulence and shear will be of use for warning applications.

Corresponding author address: Dr. Peter Meischner, DLR, Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Weßling, Germany. Email: peter.meischner@dlr.de

Abstract

High-resolution aircraft turbulence measurements, well coordinated with radar Doppler spectral width measurements, have been used to verify radar-estimated energy dissipation rates within thunderstorms anvils. The radar-estimated eddy dissipation rates have been carefully interpolated in time and space to the aircraft position. From the aircraft measurements, turbulence was estimated using a three-component averaged structure function D(r). The sensitivity of this structure function to r, to wind components selected, and to the sampling rate was investigated. Power spectra for all three wind components have been derived for selected flight sections. Differences between these three spectra and deviations from the k−5/3 law indicate areas of energy input. At areas where all three spectra follow the k−5/3 law, indicating the inertial subrange of turbulence, both estimates of the energy dissipation rate by aircraft and radar agree rather well. On average an overestimation of the dissipation rate by radar in comparison to the aircraft measurements is found, especially for weaker storm cells and in the case of strong shear. The estimated energy dissipation spans a range from some 10−6 m2 s−3 to 5 × 10−2 m2 s−3. The lower limit detectable with the C-band Doppler radar used, representing operational C-band Doppler weather radar systems, is about 10−3 m2 s−3. Closer agreement between radar and aircraft estimates has been found for the variances. Doppler spectrum width as measured by operational weather radars and indicative for both turbulence and shear will be of use for warning applications.

Corresponding author address: Dr. Peter Meischner, DLR, Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Weßling, Germany. Email: peter.meischner@dlr.de

Save