• Baker, W. E., and and Coauthors, 1995: Lidar measured winds from space: An essential component for weather and climate prediction. Bull. Amer. Meteor. Soc, 76 , 869888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., and Smalikho I. N. , 1997: Estimation of the turbulence energy dissipation rate from pulsed Doppler lidar data. Atmos. Oceanic Opt, 10 , 957965.

    • Search Google Scholar
    • Export Citation
  • Churnside, J. H., and Yura H. T. , 1983: Speckle statistics of atmospherically backscattered laser light. Appl. Opt, 22 , 25592565.

  • Dabas, A., 1999: Semiempirical model for the reliability of a matched filter frequency estimator for Doppler lidar. J. Atmos. Oceanic Technol, 16 , 1928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., Dabas A. M. , and Flamant P. H. , 2000: Remote measurement of turbulent wind spectra by heterodyne Doppler lidar techniques. J. Appl. Meteor, 39 , 24342451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmitt, G. D., 1998: SPARCLE: An approved shuttle mission to demonstrate tropospheric wind sensing using a coherent 2-micron Doppler lidar. Proc. SPIE, 3439 , 3138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1994: Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Appl. Opt, 33 , 64726481.

  • Frehlich, R. G., 1996: Simulation of coherent Doppler lidar performance in the weak signal regime. J. Atmos. Oceanic Technol, 13 , 646658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol, 14 , 5475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor, 39 , 245262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., 2001: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., and Yadlowsky M. J. , 1994: Performance of mean frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol, 11 , 12171230. Corrigendum,. . 12 , 445446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol, 11 , 15171528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt, 36 , 34913499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R. G., Hannon S. , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor, 86 , 233256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-chen, T., Xu M. , and Eberhard W. L. , 1992: Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data. J. Geophys. Res, 97 , 409418.

    • Search Google Scholar
    • Export Citation
  • Gentry, B. M., and Korb C. L. , 1994: Edge technique for high-accuracy Doppler velocimetry. Appl. Opt, 33 , 57705777.

  • Grund, C. J., 1996: High resolution Doppler lidar measurements of wind and turbulence. Advance in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, and P. Rairoux, Eds., Springer-Verlag, 235–238.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. M., Bagley H. R. , Soreide D. C. , Bowdle D. A. , Bougue R. K. , and Ehernberger L. J. , 1999: Airborne turbulence detection and warning: ACLAIM flight test results. Coherent Laser Radar Technology and Applications Conf. Digest, Mount Hood, OR, 20–23.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Hale C. P. , Magee J. R. , Kavaya M. J. , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers. Opt. Lett, 16 , 773775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Suni P. J. M. , Hale C. P. , Hannon S. M. , Magee J. R. , Bruns D. L. , and Yuen E. H. , 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens, 31 , 415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence, An Introduction to its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Huffaker, M. R., and Hardesty R. M. , 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84 , 181204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, M. R., Lawrence T. R. , Post M. J. , Priestley J. T. , Hall Jr. F. F. , Richter R. A. , and Keeler R. J. , 1984: Feasibility studies for a global wind measuring satellite system (Windsat): Analysis of simulated performance. Appl. Opt, 23 , 25232536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., and Emmitt G. D. , 1998: The Space Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission. Proc. SPIE, 3380 , 211.

  • Kavaya, M. J., Henderson S. W. , Magee J. R. , Hale C. P. , and Huffaker R. M. , 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett, 14 , 776778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korb, C. L., Gentry B. M. , and Weng C. Y. , 1992: Edge technique: Theory and application to the lidar measurement of atmospheric wind. App. Opt, 31 , 42024212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korb, C. L., Gentry B. M. , Li S. X. , and Flesia C. , 1998: Theory of the double-edge technique for Doppler lidar wind measurements. Appl. Opt, 37 , 30973104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Kristensen L. , 1988: Applications of dual aircraft formation flights. J. Atmos. Oceanic Technol, 5 , 715726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Wulfmeyer V. , and Senff C. , 2000: Measuring second through fourth-order moments in noisy data. J. Atmos. Oceanic Technol, 17 , 13301347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., Lenschow D. H. , Schwiesow R. L. , Mann J. , Frush C. L. , and Simon M. K. , 1997: Validation of NCAR 10.6-μm CO2 Doppler lidar radial velocity measurements and comparison with a 915-MHz profiler. J. Atmos. Oceanic Technol, 14 , 11101126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., and Skinner W. R. , 1997: Multiple Fabry–Perot interferometers in an incoherent Doppler lidar. Opt. Eng, 36 , 139145.

  • McGill, M. J., Skinner W. R. , and Irang T. D. , 1997a: Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar. Opt. Soc. Amer, 36 , 12531268.

    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Skinner W. R. , and Irang T. D. , 1997b: Validation of wind profiles measured with incoherent Doppler lidar. Appl. Opt, 36 , 19281939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, J. A., 1998a: Modeling of direct detection Doppler wind lidar. I. The edge technique. Appl. Opt, 37 , 64806486.

  • McKay, J. A., 1998b: Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique. Appl. Opt, 37 , 64876493.

  • Menzies, R. T., 1986: Doppler lidar atmospheric wind sensors: A comparative performance evaluation for global measurement applications from earth orbit. Appl. Opt, 25 , 25462553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzies, R. T., and Hardesty R. M. , 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE, 77 , 449462.

  • Monin, A. S., and Yaglom A. M. , 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. The MIT Press, 874 pp.

  • Rye, B. J., and Hardesty R. M. , 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound. IEEE Trans. Geosci. Remote Sens, 31 , 1627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sens, 31 , 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salamitou, P., Dabas A. , and Flamant P. H. , 1995: Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt, 34 , 499506.

  • Targ, R., Kavaya M. J. , Huffaker R. M. , and Bowles R. L. , 1991: Coherent lidar airborne windshear sensor: Performance evaluation. Appl. Opt, 30 , 20132026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Randall M. , Brewer A. , and Hardesty R. M. , 2000: 2-μm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett, 25 , 12281230.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 374 10
PDF Downloads 244 190 15

Estimation of Velocity Error for Doppler Lidar Measurements

View More View Less
  • 1 Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Various methods of estimating the magnitude of the random error of Doppler lidar velocity measurements are compared for typical operating conditions using computer simulations of lidar data. Under certain conditions, the magnitude of the random estimation error can be determined from data without the need for in situ measurements for both ground-based and space-based wind measurement.

Corresponding author address: Dr. R. G. Frehlich, Cooperative Institute for Research in the Environmental Sciences, University of Colorado, CIRES Campus Box 216, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Abstract

Various methods of estimating the magnitude of the random error of Doppler lidar velocity measurements are compared for typical operating conditions using computer simulations of lidar data. Under certain conditions, the magnitude of the random estimation error can be determined from data without the need for in situ measurements for both ground-based and space-based wind measurement.

Corresponding author address: Dr. R. G. Frehlich, Cooperative Institute for Research in the Environmental Sciences, University of Colorado, CIRES Campus Box 216, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Save