• Barnett, J. M., 2000: Remote sensing of midlatitude cirrus radiative properties: A seven-year climatology. Ph.D. dissertation, University of Utah, 220 pp.

    • Search Google Scholar
    • Export Citation
  • Berk, A., Bernstein L. S. , and Robertson D. C. , 1989: MODTRAN: A moderate resolution model for LOWTRAN7. Tech. Rep. GL-TR-89-0122, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., Illingworth A. J. , Heymsfield A. J. , McFarquhar G. M. , Browning K. A. , and Gosset M. , 1995: The role of spaceborne millimeter-wave radar in the global monitoring of ice cloud. J. Appl. Meteor, 34 , 23462366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , Shettle E. , and Anderson G. , 1986: Atmospheric radiance and transmittance: FASCOD2. Preprints, Sixth Conf. on Atmospheric Radiation, Williamsburg VA, Amer. Meteor. Soc., 141–144.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , and Davies R. W. , 1989: Line shape and the water vapor continuum. Atmos. Res.,23, 229–241.

  • Cox, S. K., McDougal D. S. , Randall D. A. , and Schiffer R. A. , 1987:: FIRE—The First ISCCP Regional Experiment. Bull. Amer. Meteor, Soc, 68 , 114118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, K. J., 1996: A radiative transfer model to analyze radiometer data in the atmospheric window. M.S. thesis, Dept. of Meteorology, University of Utah, 94 pp.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: Practical model for the calculation of multiply scattered lidar returns. Appl. Opt, 37 , 24642472.

  • Fernald, F. G., Herman B. M. , and Reagan J. A. , 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor, 11 , 482489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K. N. , 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci, 49 , 21392156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., Ping Y. , and Sun W. B. , 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11 , 22232237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and Eloranta E. W. , 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by High Spectral Resolution Lidar. Mon. Wea. Rev, 118 , 23442355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, F. F., 1968: A physical model of cirrus 8–13 μ infrared radiance. Appl. Opt, 7 , 22642269.

  • Heymsfield, A. J., and Platt C. M. R. , 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci, 41 , 846854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., Ackerman T. P. , Heymsfield A. J. , Valero F. P. J. , Sassen K. , and Spinhirne J. D. , 1992: Cirrus microphysics and radiative transfer: Cloud field study on 28 October 1986. Mon. Wea. Rev, 120 , 661684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and Oinas V. , 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res, 96 , 90279063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev, 114 , 11681199.

  • Macke, A., Mueller J. , and Raschke E. , 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci, 53 , 28132825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Orr B. W. , Kropfli R. A. , and Snider J. B. , 1994: Retrieval of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements. J. Appl. Meteor, 33 , 617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and Platt C. M. R. , 1998: Microphysical interpretation of LIRAD extinction/ absorption ratios using a microphysics-radiation scheme. Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meetings, Tucson, AZ, Department of Energy DOE/ER-0738, 495–498.

    • Search Google Scholar
    • Export Citation
  • Nicolas, F., Bissonnette L. R. , and Flamant P. H. , 1997: Lidar effective multiple-scattering coefficients in cirrus clouds. Appl. Opt, 36 , 34583468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ou, S. C., Liou K. N. , Gooch W. M. , and Takano Y. , 1993: Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7 and 10.9 μm channels. Appl. Opt, 32 , 21712180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci, 30 , 11911204.

  • Platt, C. M. R., 1978: Lidar backscatter from horizontal ice crystal plates. J. Appl. Meteor, 17 , 482488.

  • Platt, C. M. R., 1981: Remote sounding of high clouds. Part III: Monte Carlo calculations of multiple-scattered lidar returns. J. Atmos. Sci, 38 , 156167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., and Stephens G. L. , 1980: Interpretation of remotely sensed high cloud emittances. J. Atmos. Sci, 37 , 23142322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., and Dilley A. C. , 1981: Remote sounding of high clouds. Part IV: Observed temperature variations in cirrus optical properties. J. Atmos. Sci, 38 , 10691082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., Young S. A. , Manson P. J. , Patterson G. R. , Marsden S. C. , and Austin R. T. , 1998: The optical properties of equatorial cirrus from observations in the ARM pilot radiation observation experiment. J. Atmos. Sci, 55 , 19771996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, E. R., Selby J. E. A. , and Biberman L. M. , 1976: Infrared continuum absorption by atmospheric water vapor in the 8–12 μm window. Appl. Opt, 15 , 20852090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1978: Backscattering cross sections for hydrometeors: Measurements at 6328 Angstroms. Appl. Opt, 17 , 804806.

  • Sassen, K., 1980: Remote sensing of planar ice crystal fall attitudes. J. Meteor. Soc. Japan, 58 , 422429.

  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc, 72 , 18481866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1997: Contrail-cirrus and their potential for regional climate change. Bull. Amer. Meteor. Soc, 78 , 18851903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2001: Cirrus clouds. A modern perspective. Cirrus. D. Lynch et al., Eds., Oxford University Press, 11–40.

  • Sassen, K., and Cho B. S. , 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor, 31 , 12751285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Zhao H. , 1995: Lidar multiple scattering in water droplet clouds: Toward an improved treatment. Opt. Rev, 2 , 394400.

  • Sassen, K., and Benson S. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58, 2103–2112.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Campbell J. R. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci, 58 , 481496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Comstock J. M. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 2113–2127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Knight N. C. , Takano Y. , and Heymsfield A. J. , 1994: Effects of ice-crystal structure on halo formation: Cirrus cloud experimental and ray-tracing modeling studies. Appl. Opt, 33 , 45904601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Comstock J. M. , Wang Z. , and Mace G. G. , 2001a: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc.,82, 1119–1138.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Comstock J. M. , and Wang Z. , 2001b: Parameterization of the radiative properties of midlatitude high and middle level clouds. Geophys. Res. Lett, 28 , 729732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., Ma X. L. , Ackerman S. A. , Revercomb H. E. , and Knuteson R. O. , 1993: Remote sensing cloud properties from high spectral resolution infrared observations. J. Atmos. Sci, 50 , 17081720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., and Swanson R. A. , 1981: New look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres. J. Atmos. Sci, 38 , 387399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., Tsay S. C. , Wiscombe W. , and Jayaweera K. , 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt, 27 , 25022509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and Liou K. N. , 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci, 52 , 818837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Shippert T. R. , Brown P. D. , Clough S. A. , Knuteson R. O. , Revercomb H. E. , and Smith W. L. , 1998: Long-term analyses of observed and line-by-line calculations of longwave surface spectral radiance and the effect of scaling the water vapor profile. Proc. Eighth Atmospheric Radiation Measurement (ARM) Science Team Meetings, Tucson, AZ, Department of Energy DOE/ER-0738, 773–776.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Feltz W. F. , and Ferrare R. A. , 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc, 81 , 13011318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt, 34 , 70197031.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 253 232 4
PDF Downloads 58 44 4

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements

View More View Less
  • 1 Department of Meteorology, University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ratio for each lidar profile, which accounts for changes in cloud microphysical properties with time. The technique also utilizes a correlated K distribution radiative transfer model, where absorption coefficients K have been tabulated specifically for the bandwidth and filter function of the infrared radiometer. The radiative transfer model allows for estimation of infrared emission due to atmospheric water vapor, ozone, and carbon dioxide, which is essential for deriving cirrus radiative properties. Also described is an improved technique for estimation of upwelling IR radiation that is emitted by the surface of the earth and reflected by the cloud into the radiometer field of view. Derived cirrus cloud properties include base and top height and temperature, visible optical depth, emittance, backscatter-to-extinction ratio, and extinction-to-absorption ratio. The purpose of this algorithm is to facilitate the analysis of the extensive high-cloud dataset obtained at the University of Utah's Facility for Atmospheric Remote Sensing in Salt Lake City, Utah. To illustrate the method, a cirrus case study is presented.

* Current affiliation: Pacific Northwest National Laboratory (PNNL), Richland, Washington. PNNL is operated by Battelle Corporation for the U.S. Department of Energy.

Corresponding author address: Jennifer Comstock, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99352. Email: jennifer.comstock@pnl.gov

Abstract

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ratio for each lidar profile, which accounts for changes in cloud microphysical properties with time. The technique also utilizes a correlated K distribution radiative transfer model, where absorption coefficients K have been tabulated specifically for the bandwidth and filter function of the infrared radiometer. The radiative transfer model allows for estimation of infrared emission due to atmospheric water vapor, ozone, and carbon dioxide, which is essential for deriving cirrus radiative properties. Also described is an improved technique for estimation of upwelling IR radiation that is emitted by the surface of the earth and reflected by the cloud into the radiometer field of view. Derived cirrus cloud properties include base and top height and temperature, visible optical depth, emittance, backscatter-to-extinction ratio, and extinction-to-absorption ratio. The purpose of this algorithm is to facilitate the analysis of the extensive high-cloud dataset obtained at the University of Utah's Facility for Atmospheric Remote Sensing in Salt Lake City, Utah. To illustrate the method, a cirrus case study is presented.

* Current affiliation: Pacific Northwest National Laboratory (PNNL), Richland, Washington. PNNL is operated by Battelle Corporation for the U.S. Department of Energy.

Corresponding author address: Jennifer Comstock, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K9-24, Richland, WA 99352. Email: jennifer.comstock@pnl.gov

Save