A Characterization of the North Atlantic STMW Layer Climatology Using World Ocean Atlas 1994 Data

Michael A. Alfultis Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Michael A. Alfultis in
Current site
Google Scholar
PubMed
Close
and
Peter Cornillon Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Peter Cornillon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North Atlantic Subtropical Mode Water (STMW) layer was identified based on its temperature, large thickness, and small temperature gradient. Comparisons between this method and identifying the STMW layer using a density-based (i.e., potential vorticity) criteria indicate that this method successfully identifies the STMW layer as the remnant of the previous winter's convective mixing. By using this temperature-based characterization of the STMW layer, this method was able to develop a climatology using the large number of expendable bathythermographs (XBTs) deployed between 1968 and 1988, and contained in the World Ocean Atlas 1994 historical hydrographic database. From this climatology, the STMW layer that is the remnant of the previous winter's convective activity is typically found between 175 and 450 m, has an average temperature near 18°C, and has a mean temperature gradient of 0.5°C (100 m)−1. Comparisons of the STMW temperature, thickness, and temperature gradient characteristics in this climatology agree with other observations of the North Atlantic STMW layer.

* Current affiliation: Department of Science, U.S. Coast Guard Academy, New London, Connecticut.

Corresponding author address: CDR Michael Alfultis, Department of Science, US Coast Guard Academy, 27 Mohegan Avenue, New London, CT 06320-8101. Email: MAlfultis@cga.uscg.mil

Abstract

The North Atlantic Subtropical Mode Water (STMW) layer was identified based on its temperature, large thickness, and small temperature gradient. Comparisons between this method and identifying the STMW layer using a density-based (i.e., potential vorticity) criteria indicate that this method successfully identifies the STMW layer as the remnant of the previous winter's convective mixing. By using this temperature-based characterization of the STMW layer, this method was able to develop a climatology using the large number of expendable bathythermographs (XBTs) deployed between 1968 and 1988, and contained in the World Ocean Atlas 1994 historical hydrographic database. From this climatology, the STMW layer that is the remnant of the previous winter's convective activity is typically found between 175 and 450 m, has an average temperature near 18°C, and has a mean temperature gradient of 0.5°C (100 m)−1. Comparisons of the STMW temperature, thickness, and temperature gradient characteristics in this climatology agree with other observations of the North Atlantic STMW layer.

* Current affiliation: Department of Science, U.S. Coast Guard Academy, New London, Connecticut.

Corresponding author address: CDR Michael Alfultis, Department of Science, US Coast Guard Academy, 27 Mohegan Avenue, New London, CT 06320-8101. Email: MAlfultis@cga.uscg.mil

Save
  • Alfultis, M., 1997: Statistical characterizations of North Atlantic Subtropical Mode Water. Ph.D. dissertation, University of Rhode Island, 161 pp.

    • Search Google Scholar
    • Export Citation
  • Alfultis, M., and Cornillon P. , 2001: Annual and interannual changes in the North Atlantic STMW layer properties. J. Phys. Oceanogr, 31 , 20662086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I., and Gordon A. , 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res, 101 , . (C2),. 36753696.

  • Bingham, F. M., 1992: Formation and spreading of subtropical mode water in the North Pacific. J. Geophys. Res, 97 , 1117711189.

  • Brundage, W. L., and Dugan J. P. , 1986: Observations of an anticyclonic eddy of 18° water in the Sargasso Sea. J. Phys. Oceanogr, 16 , 717727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casey, K. S., and Cornillon P. , 1999: A comparison of satellite and in situ–based sea surface temperature climatologies. J. Climate, 12 , 18481863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1986: On the potential vorticity structure of weakly ventilated isopycnals: A theory of subtropical mode water maintenance. J. Phys. Oceanogr, 16 , 12041216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebbesmeyer, C., and Lindstrom E. , 1986: Structure and origin of 18°C water observed during the POLYMODE local dynamics experiment. J. Phys. Oceanogr, 16 , 443453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, X., and Richman M. B. , 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8 , 897931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M., and Fofonoff M. , 1993: Downstream development of the Gulf Stream from 68° to 55°W. J. Phys. Oceanogr, 23 , 225249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallock, Z., and Teague W. , 1992: The fall rate of the T-7 XBT. J. Atmos. Oceanic Technol, 9 , 470483.

  • Hanawa, K., 1987: Interannual variations of the winter-time outcrop area of Subtropical Mode Water in the western North Pacific Ocean. Atmos.–Ocean, 25 , 358374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and Yoritaka H. , 1987: Detection of systematic errors in XBT data and their correction. J. Oceanogr. Soc. Japan, 43 , 6876.

  • Hanawa, K., and Hoshino I. , 1988: Temperature structure and mixed layer in the Kuroshio region over the Izu Ridge. J. Mar. Res, 46 , 683700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and Yoshikawa Y. , 1991: Reexamination of the depth error in XBT data. J. Atmos. Oceanic Technol, 8 , 422429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., Rual P. , Bailey R. , Sy A. , and Szabados M. , 1995: A new depth-time equation for Sippican or TSK T-7, T-6, and T-4 expendable bathythermographs (XBT). Deep-Sea Res, 42 , 14231451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Drijfhout S. , 1998: Mode water variability in a model of the subtropical gyre: Response to anomalous forcing. J. Phys. Oceanogr, 28 , 266288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Istoshin, Y., 1961: Formative area of ‘eighteen-degree’ water in the Sargasso Sea. Deep-Sea Res, 9 , 384390.

  • Joyce, T. M., and Robbins P. , 1996: The long-term hydrographic record at Bermuda. J. Climate, 9 , 31213131.

  • Klein, B., and Hogg N. , 1996: On the interannual variability of 18 Degree Water formation as observed from moored instruments at 55°W. Deep-Sea Res, 43 , 17771806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, P., 1984: On the mixed-layer climatology of the North and Tropical Atlantic. Tellus, 36A , 292305.

  • Lappo, S., Alekseev G. , and Efimov V. , 1995: On oceanological results of the program Sections. Atmos. Oceanic Phys, 31 , 373384.

  • Leetmaa, A., 1977: Effects of the winter of 1976–1977 on the northwestern Sargasso Sea. Science, 198 , 188189.

  • Levitus, S., and Boyer T. P. , 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS, 117 pp.

  • Marsh, R., and New A. L. , 1996: Modeling 18° Water variability. J. Phys. Oceanogr, 26 , 10591080.

  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res, 16 , 463472.

  • Masuzawa, J., 1972: Water characteristics of the North Pacific central region. Kuroshio: Its Physical Aspects, H. Stommel and K. Yoshida, Eds., University of Tokyo Press, 95–127.

    • Search Google Scholar
    • Export Citation
  • McCartney, M., 1982: The subtropical recirculation of mode waters. J. Mar. Res, 40 , (Suppl.),. 427464.

  • McCartney, M., Worthington L. , and Raymer M. , 1980: Anomalous water mass distributions at 55°W in the North Atlantic in 1977. J. Mar. Res, 38 , 147172.

    • Search Google Scholar
    • Export Citation
  • McDowell, S., Rhines P. , and Keffer T. , 1982: North Atlantic potential vorticity and its relation to the general circulation. J. Phys. Oceanogr, 12 , 14171436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provost, C., Escoffier C. , Maamaatuaiahutapu K. , Kartavtseff A. , and Garcon V. , 1999: Subtropical Mode Waters in the South Atlantic Ocean. J. Geophys. Res, 104 , 2103321049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and Joyce T. , 1992: Interannual variability in the mid- and low-latitude western North Pacific. J. Phys. Oceanogr, 22 , 10621079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and Young W. R. , 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech, 122 , 347367.

  • Roemmich, D., and Cornuelle B. , 1992: The Subtropical Mode Waters of the South Pacific Ocean. J. Phys. Oceanogr, 22 , 11781187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., Price J. , and Webb D. , 1986: The spatial and temporal evolution of a cluster of SOFAR floats in the POLYMODE Local Dynamics Experiment (LDE). J. Phys. Oceanogr, 16 , 428442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, E., Stommel H. , Menzel D. , and Sutcliffe Jr. W. , 1959: Climatic stability of eighteen degree water at Bermuda. J. Geophys. Res, 64 , 363366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, C. Y., McWilliams J. C. , Taft B. A. , Ebbesmeyer C. C. , and Lindstrom E. J. , 1986: The mesoscale spatial structure and evolution of dynamical and scalar properties observed in the northwestern Atlantic Ocean during the POLYMODE Local Dynamics Experiment. J. Phys. Oceanogr, 16 , 454482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singer, J., 1990: On the error observed in electronically digitized T-7 XBT data. J. Atmos. Oceanic Technol, 7 , 603611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., and Hanawa K. , 1990: The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of Subtropical Mode Water. J. Mar. Res, 48 , 543566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., and Hanawa K. , 1995: Interannual variations of North Pacific Subtropical Mode Water in the 137°E section. J. Phys. Oceanogr, 25 , 10121017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., Hanawa K. , and Toba Y. , 1989: Subtropical mode water in the 137°E section. J. Phys. Oceanogr, 19 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taft, B. A., Lindstrom E. J. , Ebbesmeyer C. C. , Shen C. Y. , and McWilliams J. C. , 1986: Water mass structure during the POLYMODE Local Dynamics Experiment. J. Phys. Oceanogr, 16 , 403426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., and Raymer M. , 1982: Eighteen degree water variability. J. Mar. Res, 40 , . (Suppl.),. 757775.

  • Worthington, L., 1959: The 18° water in the Sargasso Sea. Deep-Sea Res, 5 , 297305.

  • Worthington, L., 1972: Negative oceanic heat flux as a cause of water-mass formation. J. Phys. Oceanogr, 2 , 205211.

  • Worthington, L., 1977: Intensification of the Gulf Stream after the winter of 1976–77. Nature, 270 , 415417.

  • Yasuda, T., and Hanawa K. , 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr, 27 , 858870.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 58 8
PDF Downloads 101 51 2