SWIMSAT: A Real-Aperture Radar to Measure Directional Spectra of Ocean Waves from Space—Main Characteristics and Performance Simulation

Danièle Hauser CETP/CNRS, Velizy, France

Search for other papers by Danièle Hauser in
Current site
Google Scholar
PubMed
Close
,
Elbatoul Soussi CLS, Ramonville St. Agne, France

Search for other papers by Elbatoul Soussi in
Current site
Google Scholar
PubMed
Close
,
Eric Thouvenot CNES, Toulouse, France

Search for other papers by Eric Thouvenot in
Current site
Google Scholar
PubMed
Close
, and
Laurent Rey Alcatel Space Industries, Toulouse, France

Search for other papers by Laurent Rey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The project SWIMSAT aims to measure the directional spectra of waves from space using a real-aperture radar with a low-incidence, conical-scanning beam. This system’s design is based on airborne versions developed in France and the United States. In this paper, the authors present the satellite measurement principle and instruments. For this study, the authors developed a simulation method to analyze the sensitivity of wave spectra, taking into account radar observation conditions (spatial resolution, signal-to-noise ratio, integration time, etc.) and inversion processing parameters (noise level and range displacements during temporal integration). The simulation method and results are presented in this paper. The study enabled validation and refinement of the satellite concept. The simulations show that in the chosen configuration, SWIMSAT is capable of measuring wave spectral properties in wind–sea conditions (at dominant wavelengths over approximately 70 m) and swell conditions (at significant wave heights over approximately 1.5–2 m, depending on wind). Unlike for synthetic aperture radar observations, the performance of SWIMSAT in terms of minimum detectable wavelength is independent on the wave propagation direction.

Corresponding author address: Dr. Danièle Hauser, CETP, 10-12 Avenue de l’Europe, 78140 Velizy, France.

Email: hauser@cetp.ipsl.fr

Abstract

The project SWIMSAT aims to measure the directional spectra of waves from space using a real-aperture radar with a low-incidence, conical-scanning beam. This system’s design is based on airborne versions developed in France and the United States. In this paper, the authors present the satellite measurement principle and instruments. For this study, the authors developed a simulation method to analyze the sensitivity of wave spectra, taking into account radar observation conditions (spatial resolution, signal-to-noise ratio, integration time, etc.) and inversion processing parameters (noise level and range displacements during temporal integration). The simulation method and results are presented in this paper. The study enabled validation and refinement of the satellite concept. The simulations show that in the chosen configuration, SWIMSAT is capable of measuring wave spectral properties in wind–sea conditions (at dominant wavelengths over approximately 70 m) and swell conditions (at significant wave heights over approximately 1.5–2 m, depending on wind). Unlike for synthetic aperture radar observations, the performance of SWIMSAT in terms of minimum detectable wavelength is independent on the wave propagation direction.

Corresponding author address: Dr. Danièle Hauser, CETP, 10-12 Avenue de l’Europe, 78140 Velizy, France.

Email: hauser@cetp.ipsl.fr

Save
  • Alpers, W. R., R. D. Ross, and C. L. Rufenach, 1981: On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res.,86 (C7), 6481–6498.

    • Crossref
    • Export Citation
  • Breivik, L.-A., and M. Reistad, 1994: Assimilation of ERS-1 altimeter wave heights in an operational numerical wave model. Wea. Forecasting,9, 440–451.

    • Crossref
    • Export Citation
  • ——, ——, H. Schyberg, J. Sunde, H. E. Krogstad, and H. Johnsen, 1998: Assimilation of ERS SAR wave spectra in an operational wave model. J. Geophys. Res.,103 (C4), 7887–7900.

    • Crossref
    • Export Citation
  • Brüning, C., S. Hasselmann, K. Hasselmann, S. Lehner, and T. Gerling, 1994: A first evaluation of ERS-1 synthetic aperture radar wave mode data. Global Atmos. Ocean Syst.,2, 61–98.

  • de la Heras, M. M., G. Burgers, and P. A. E. M. Janssen, 1994: Variational wave data assimilation in a third-generation wave model. J. Atmos. Oceanic Technol.,11, 1350–1369.

    • Crossref
    • Export Citation
  • Durden, S. L., and J. F. Vesecky, 1985: A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Oceanic Eng.,OE-10, 445–451.

  • Engen, G., and H. Johnsen, 1994: Directional wave spectra by inversion of ERS-1 synthetic aperture radar ocean imagery. IEEE Trans. Geosci. Remote Sens.,32, 340–352.

    • Crossref
    • Export Citation
  • ——, and ——, 1995: SAR-ocean wave inversion using image cross-spectra. IEEE Trans. Geosci. Remote Sens.,33, 1047–1056.

    • Crossref
    • Export Citation
  • Eymard, L., and Coauthors, 1996: Study of the air–sea interactions at the mesoscale: The SEMAPHORE experiment. Ann. Geophys.,14, 986–1015.

    • Crossref
    • Export Citation
  • Hasselmann, K., and S. Hasselmann, 1991: On the non-linear mapping of ocean wave spectrum into a SAR image spectrum and its inversion. J. Geophys. Res.,96 (6) 10 713–10 729.

  • Hasselmann, S., C. Brüning, K. Hasselmann, and P. Heimbach, 1996:An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res.,101 (C7) 15 615–16 629.

    • Crossref
    • Export Citation
  • Hauser, D., and G. Caudal, 1996: Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation. J. Geophys. Res.,101 (C11), 25 833–25 846.

    • Crossref
    • Export Citation
  • ——, ——, G. J. Rijckenberg, D. Vidal-Madjar, G. Laurent, and P. Lancelin, 1992a: RESSAC: A new airborne FM/CW radar ocean wave spectrometer. IEEE Trans.Geosci. Remote Sens.,30, 981–995.

    • Crossref
    • Export Citation
  • ——, ——, and B. Chapron, 1992b: Observations with the RESSAC airborne radar during René 91. Proc. ERS-1 Geophysical Validation Workshop, ESA WPP-36, Penhorst, France, European Space Agency, 47–53.

  • ——, ——, and L. K. Shay, 1995: Behavior of the ocean radar cross-section at low incidence, observed in the vicinity of the Gulf Stream. IEEE Trans. Geosci. Remote Sens.,33, 162–171.

    • Crossref
    • Export Citation
  • Jackson, F. C., 1981: An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites. Radio Sci.,16, 1385–1400.

    • Crossref
    • Export Citation
  • ——, 1987: The Radar Ocean–Wave Spectrometer. Johns Hopkins APL Tech. Dig.,8, 116–127.

  • ——, and T. W. Walton, 1985: A comparison of in situ and airborne radar observations of ocean wave directionality. J. Geophys. Res.,90 (C1), 1005–1018.

    • Crossref
    • Export Citation
  • ——, and D. R. Lyzenga, 1990: Microwave techniques for measuring directional wave spectra. Surface Waves and Fluxes, G. L. Geernaert and W. J. Plant, Eds., Vol. 2, Kluwer Academic, 221–264.

    • Crossref
    • Export Citation
  • ——, T. W. Walton, and P. L. Baker, 1985: Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. J. Geophys. Res.,90 (C1), 987–1004.

    • Crossref
    • Export Citation
  • Janssen, P. A. E. M., P. Lionello, M. Reistad, and A. Hollingsworth, 1989: Hindcasts and data assimilation studies with the WAM model during the SEASAT period. J. Geophys. Res.,94 (C1), 973–993.

    • Crossref
    • Export Citation
  • Krogstadt, H. E., O. Samset, and P. W. Vachon, 1994: Generalizations of the non-linear ocean-SAR transformation and a simplified SAR inversion algorithm. Atmos.–Ocean,32, 61–82.

    • Crossref
    • Export Citation
  • Lionello, P., and H. Günther, 1992: Assimilation of altimeter data in a global third-generation model. J. Geophys. Res.,97 (C9), 14 453–14 474.

    • Crossref
    • Export Citation
  • Mastenbroek, C., V. K. Makin, A. C. Voorrips, and G. J. Komen, 1994: Validation of ERS-1 altimeter wave height measurements and assimilation in a North Sea wave model. Global Atmos. Ocean Syst.,2, 163–184.

  • Meneghini, R., T. Iguchi, T. Kosu, L. Liao, K. Okamoto, and J. A. Jones, 1998: Use of the surface reference technique for path-attenuation estimate from the TRMM radar. Proc. Symp. on the Precipitation Observation from Non-sun-synchronous Orbit, Nagoya, Japan, Nagoya University, 163–168.

  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind sea based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res.,69, 5181–5190.

    • Crossref
    • Export Citation
  • Soussi, E., 1997: Contribution à la spécification et analyse des performances du système VAGSAT pour la mesure spatiale des vagues à partir d’un radar à ouverture réelle. Doctoral thesis, Université Paris 6, 221 pp.

  • Ulaby, F. T., R. K. Moore, and A. K. Fung, 1982: Microwave Remote Sensing. Vol. II. Addison-Wesley, 1064 pp.

  • Valenzuela, G. R., 1978: Theories for the interaction of electromagnetic and oceanic waves—A review. Bound.-Layer Meteor.,13, 61–85.

    • Crossref
    • Export Citation
  • Voorrips, A. C., V. K. Makin, and S. Hasselmann, 1997: Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J. Geophys. Res.,102 (C3), 5829–5849.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 763 176 10
PDF Downloads 396 87 6