• Bartsch, B., , and Fischer J. , 1997: Passive remote sensing of columnar water vapor content over land surfaces. MPI report 234, Max-Planck-Institut, Hamburg, Germany, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., , and Fischer J. , 2000: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared. J. Quant. Spectrosc. Radiat. Transfer, 66 , 539553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffiès, S., , Bréon F. M. , , Tanré D. , , and Dubuisson P. , 1997: Atmospheric water vapor estimate by a differential absorption technique with the polarization and directionality of the earth reflectances (POLDER) instrument. J. Geophys. Res., 102 , (D3),. 38313841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chernykh, I. V., , and Eskridge R. E. , 1996: Determination of cloud amount and level from radiosonde soundings. J. Appl. Meteor., 35 , 13621369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., , Breon F. M. , , Leroy M. , , Podaire A. , , Bricaud A. , , Buriez J. C. , , and Seze G. , 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32 , 598615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fell, F., , and Fischer J. , 2001: Numerical simulation of the light-field in the atmosphere–ocean system using the matrix operator method. J. Quant. Spectrosc. Radiat. Transfer, 69/3 , 351388.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., 1983: Fernerkundung von Schwebstoffen im Ozean. Hamburger Geophys. Einzelschriften, 65 . (Reihe A), 105 pp.

  • ——,. 1988: High resolution spectroscopy for remote sensing of physical cloud properties and water vapour. Current Problems in Atmospheric Radiation, J. Lenoble and J.-F. Geleyn, Eds., Deepak, 151–156.

    • Search Google Scholar
    • Export Citation
  • ——, and Bennartz, R., 1997: Retrieval of total water vapour content from MERIS measurements. ESA reference number PO-TN-MEL-GS-005, ESA-ESTEC, Noordwijk, Netherlands, Algorithm Theoretical Basis Document (ATBD).

    • Search Google Scholar
    • Export Citation
  • Frouin, R., , Deschamps P-Y. , , and Lecomte P. , 1990: Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: Theory and airborne verification. J. Appl. Meteor., 29 , 448460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B-C., , Goetz A. F. H. , , Westwater E. R. , , Conel J. E. , , and Green R. O. , 1993: Possible near-IR channels for remote sensing of precipitable water vapor from geostationary satellite platforms. J. Appl. Meteor., 32 , 17911801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, M., , Bezy J. L. , , Montagner F. , , Morel A. , , and Fischer J. , 1995: Envisat's Medium-Resolution Imaging Spectrometer: MERIS. Esa Bull., 76 , 4046.

    • Search Google Scholar
    • Export Citation
  • Plass, G. N., , Kattawar G. W. , , and Catchings F. E. , 1973: Matrix–operator theory of radiative transfer. Appl. Opt., 12 , 314329.

  • Rothman, L. S., and and Coauthors, 1998: The Hitran molecular spectrscopic database and Hawks (Hitran atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., , and Emery W. , 1990: Atmospheric water-vapor over ocean from Special Sensor Microwave Imager observations. Int. J. Remote Sens., 11 , 753766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., , Randall D. A. , , Collatz C. J. , , Berry J. A. , , Field C. B. , , Dazlich D. A. , , Zhang C. , , and Collelo C. D. , 1996a: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9 , 676705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Los, S. O., , Tucker C. J. , , Justice C. O. , , Dazlich D. A. , , Collatz G. J. , , and Randall D. A. , 1996b: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9 , 706737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1994: Remote Sensing of the Lower Atmosphere. Oxford University Press, 544 pp.

  • Tahl, S., , and Schoenermark Mv , 1998: Determination of the column water vapour of the atmosphere using backscattered solar radiation measured by the modular optoelectronical scanner (MOS). Int. J. Remote Sens., 19 , 32233236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesperini, M., , Breon F-M. , , and Tanre D. , 1999: Atmospheric water vapor content from spaceborne POLDER measurements. IEEE Trans. Geosci. Remote Sens., 37 , 16131619.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 81
PDF Downloads 47 47 10

Remote Sensing of Atmospheric Water Vapor from Backscattered Sunlight in Cloudy Atmospheres

View More View Less
  • 1 Institute for Space Sciences, Free University of Berlin, Berlin, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The “differential absorption technique” is used to derive columnar water vapor contents above clouds. Radiative transfer simulations were carried out for two different spectral channels, one channel within the ρστ–water water absorption band and one window channel. The simulations were performed for two different instruments, ENVISAT's Medium Resolution Imaging Spectrometer (MERIS) and the Polarization and Directionality of the Earth Reflectances (POLDER) instrument on the ADEOS platform.

Vertical weighting functions of the contribution of different cloud layers to the total absorption by water vapor have been calculated that state that in case of clouds above ocean surfaces, the total absorption is determined mainly by the water vapor content above the clouds, while over land surfaces the influence of the lower atmospheric layers increases.

Radiative transfer simulations have been performed for a large number of cloudy atmospheric profiles and have been used to develop a regression-type algorithm for the retrieval of water vapor content above clouds with a theoretical accuracy between 1 and 3 kg m−2. A first verification using POLDER measurements together with radio soundings shows a mean rms error of 1.8 kg m−2 over ocean and 2.0 kg m−2 over land surfaces.

Corresponding author address: Peter Albert, Institute for Space Studies, Free University of Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany.Email: peter@amor.met.fu-berlin.de

Abstract

The “differential absorption technique” is used to derive columnar water vapor contents above clouds. Radiative transfer simulations were carried out for two different spectral channels, one channel within the ρστ–water water absorption band and one window channel. The simulations were performed for two different instruments, ENVISAT's Medium Resolution Imaging Spectrometer (MERIS) and the Polarization and Directionality of the Earth Reflectances (POLDER) instrument on the ADEOS platform.

Vertical weighting functions of the contribution of different cloud layers to the total absorption by water vapor have been calculated that state that in case of clouds above ocean surfaces, the total absorption is determined mainly by the water vapor content above the clouds, while over land surfaces the influence of the lower atmospheric layers increases.

Radiative transfer simulations have been performed for a large number of cloudy atmospheric profiles and have been used to develop a regression-type algorithm for the retrieval of water vapor content above clouds with a theoretical accuracy between 1 and 3 kg m−2. A first verification using POLDER measurements together with radio soundings shows a mean rms error of 1.8 kg m−2 over ocean and 2.0 kg m−2 over land surfaces.

Corresponding author address: Peter Albert, Institute for Space Studies, Free University of Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany.Email: peter@amor.met.fu-berlin.de

Save