• Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • ——, and MacIntosh, P. C., 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr., 12 , 10041018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogden, P. S., , and O'Donnell J. , 1998: Generalized inverse with shipboard current measurements: Tidal and nontidal flows in Long Island Sound. J. Mar. Res., 56 , 9951027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Malanotte-Rizzoli, P., , and Signell R. , 1996: Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay. J. Geophys. Res., 101 , (C3),. 64876500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., , Griffin D. A. , , Hazen D. G. , , Matheson S. A. , , and Thompson K. R. , 1995: Shipboard nowcasting of shelf circulation. Contin. Shelf Res., 15 , 115128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Candela, J. C., , Beardsley R. C. , , and Limeburner R. , 1992: Separation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations. J. Geophys. Res., 97 , 769788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foreman, M. G. G., , Crawford W. R. , , and Marsden R. F. , 1995: De-Tiding: Theory and practice. Quantitative Skill Assessment for Coastal Ocean Models, D. R. Lynch and A. M. Davies, Eds., American Geophysical Union, 203–239.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., , and VanLoan C. F. , 1983: Martix Computations. The Johns Hopkins University Press, 476 pp.

  • Greenberg, D. A., , Loder J. W. , , Shen Y. , , Lynch D. R. , , and Naimie C. E. , 1997: Spatial and temporal structure of the barotropic response of the Scotian Shelf and Gulf of Maine to surface wind stress: A model-based study. J. Geophys. Res., 102 , 20 89720 915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, D. A., , and Thompson K. R. , 1996: The adjoint method of data assimilation used operationally for shelf circulation. J. Geophys. Res., 101 , 34573477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, C. G., , and Lynch D. R. , 1999: CASCO3 user guide. Dartmouth College Numerical Methods Lab Rep. NML-99-6. [Available online at http://www-nml.dartmouth.edu/Publications/internal_reports/NML-99-6.html.].

    • Search Google Scholar
    • Export Citation
  • Lewis, J. K., , Shulman I. , , and Blumberg A. F. , 1998: Assimilation of Doppler radar current data into numerical ocean models. Contin. Shelf Res., 18 , 541559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. R., , and Gray W. G. , 1979: A wave equation model for finite element tidal computations. Comput. Fluids, 7 , 207228.

  • ——, and Werner, F. E., 1991: Three-dimensional hydrodynamics on finite elements, Part II: Nonlinear time-stepping model. Int. J. Numer. Methods Fluids, 12 , 507533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Ip, J. T. C., , Naimie C. E. , , and Werner F. E. , 1996: Comprehensive coastal circulation model with application to the Gulf of Maine. Contin. Shelf Res., 16 , 875906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Naimie, C. E., , and Hannah C. G. , 1998: Hindcasting the Georges Bank Circulation: Part I, Detiding. Contin. Shelf Res., 18 , 607639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, and. Coauthors. . 2001: Real-time data assimilative modeling on Georges Bank. Oceanography,. 14 , 6577.

  • Malanotte-Rizzoli, P., Ed.,. 1996: Modern Approaches to Data Assimilation in Ocean Modeling. Oceanography Series, Vol. 61, Elsevier, 455 pp.

    • Search Google Scholar
    • Export Citation
  • Mooers, C. N. K., Ed.,. 1999: Coastal Ocean Prediction. Coastal and Esturaine Series, Vol. 56, American Geophysical Union, 523 pp.

  • Press, W. H., , Flannery B. P. , , Teukolsky S. A. , , and Vetterling W. T. , 1986: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 818 pp.

    • Search Google Scholar
    • Export Citation
  • Thacker, W. C., 1987: Three lectures on fitting numerical models to observations. Report GKSS 87/E/65, GKSS Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 65 pp.

    • Search Google Scholar
    • Export Citation
  • ——,. 1988: Fitting models to data by enforcing spatial and temporal smoothness. J. Geophys. Res., 93 , 10 65510 665.

  • ——,. 1992: Oceanographic inverse problems. Physica D, 60 , 1637.

  • ——, and Long, R. B., 1988: Fitting dynamics to data. J. Geophys. Res., 93 , 12271240.

  • Thompson, K. R., , and Griffin D. A. , 1998: A model of the circulation on the outer Scotian Shelf with open boundary conditions inferred by data assimilation. J. Geophys. Res., 103 , . 30 64130 660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. G., , Greenberg D. A. , , Loder J. W. , , and Smith P. C. , 1986: The steady state barotropic response of the Gulf of Maine and adjacent regions to surface wind stress. J. Phys. Oceanogr., 16 , 947966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 78
PDF Downloads 6 6 1

Inverse Model for Limited-Area Hindcasts on the Continental Shelf

View More View Less
  • 1 Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
  • | 2 Bedford Institute, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The authors have constructed an inverse model for interpreting subtidal velocity observations in a limited-area hindcasting context. The intended use is following removal of a best prior circulation estimate that accounts for tide, local baroclinicity, and the direct response to local wind forcing. The remaining, subtidal velocity signal is inverted to provide far-field subtidal pressure forcing.

The forward portion of the model is a linearization of a full-physics 3D simulator (QUODDY). Its inversion is achieved by gradient descent, using an exact algebraic adjoint and strong dynamical constraints. The cost function is a weighted least squares blend of velocity mismatch plus boundary condition size, slope, and tendency. The control parameters are barotropic open-water boundary conditions. Solution is achieved in the time domain, as a complement to the frequency-domain “detiding” inversion presented earlier.

A simple test case is introduced to demonstrate features of the inversion: precision, accuracy, interpolation, and extrapolation. A representative application on realistic topography (Georges Bank) is given.

Corresponding author address: Dr. Daniel R. Lynch, MacLean Professor of Engineering, Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755-8000. Email: daniel.r.lynch@dartmouth.edu

Abstract

The authors have constructed an inverse model for interpreting subtidal velocity observations in a limited-area hindcasting context. The intended use is following removal of a best prior circulation estimate that accounts for tide, local baroclinicity, and the direct response to local wind forcing. The remaining, subtidal velocity signal is inverted to provide far-field subtidal pressure forcing.

The forward portion of the model is a linearization of a full-physics 3D simulator (QUODDY). Its inversion is achieved by gradient descent, using an exact algebraic adjoint and strong dynamical constraints. The cost function is a weighted least squares blend of velocity mismatch plus boundary condition size, slope, and tendency. The control parameters are barotropic open-water boundary conditions. Solution is achieved in the time domain, as a complement to the frequency-domain “detiding” inversion presented earlier.

A simple test case is introduced to demonstrate features of the inversion: precision, accuracy, interpolation, and extrapolation. A representative application on realistic topography (Georges Bank) is given.

Corresponding author address: Dr. Daniel R. Lynch, MacLean Professor of Engineering, Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755-8000. Email: daniel.r.lynch@dartmouth.edu

Save