• Anthes, R. A., 1974: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci., 31 , 702718.

  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 , 487490.

  • Black, T. L., 1994: NMC notes: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., , and Mellor G. L. , 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models. N. S. Heaps, Ed., Vol. 4, Coastal and Estuarine Sciences, Amer. Geophys. Union, 1–16.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. H., , and Niiler P. P. , 1975: The Florida Current at Key West: Summer, 1972. J. Mar. Res., 33 , 1.

  • Davis, R. E., 1991: Observing the general circulation with floats. J. Mar. Res., 38 , (Suppl.) S. 531571.

  • Duing, O., , and Johnson D. , 1971: Southward flow under the Florida Current. Science, 173 , 428430.

  • Dutkiewicz, S., , Griffa A. , , and Olson D. B. , 1993: Particle diffusion in a meandering jet. J. Geophys. Res., 98 , 16 48716 500.

  • Hoke, J. E., , and Anthes R. A. , 1976: The initialization of numerical models by a dynamic initialization technique. Mon. Wea. Rev., 104 , 15511556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., , and Schott F. , 1987: Meandering and transport variations of the Florida Current. J. Phys. Oceanogr., 17 , 11281147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., , and Molinari R. L. , 1987: Topographic modification of the Florida Current by Little Bahama and Great Bahama Banks. J. Phys. Oceanogr., 17 , 17241736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, ——, and Vertes, P. S., 1987: Structure and variability of the Florida Current at 27°N: April 1982–July 1984. J. Phys. Oceanogr., 17 , 565583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Johns, E., , and Rossby T. , 1989: The average distribution of volume transport and potential vorticity with temperature at three sections across the Gulf of Stream. J. Phys. Oceanogr., 19 , 3651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Molinari, R. L., , Atkinson L. P. , , Lee T. N. , , Hamilton P. , , and Waddell E. , 1995: Transport, potential vorticity and current/temperature structure across Northwest Providence and Santaren Channels and the Florida Current off Cay Sal Bank. J. Geophys. Res., 100 , 85618569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., , and Mayer A. , 1977: Low-frequency current variability and spin off eddies on the shelf off southeast Florida. J. Mar. Res., 35 , 193220.

    • Search Google Scholar
    • Export Citation
  • ——, and William, E., 1988: Wind forced transport fluctuations of the Florida Current. J. Phys. Oceanogr., 18 , 937946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Schott, F. A., , and Zantopp R. , 1985: Florida Current: Low-frequency variability as observed with moored current meters during April 1982 to June 1983. Science, 227 , 298302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, D. A., , Leaman K. D. , , and Lee T. N. , 1984: Tidal motions in the Florida Current. J. Phys. Oceanogr., 14 , 15511559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1996: Users guide for a 3-D, primitive equation, numerical ocean model. Princeton University, 39 pp. [Available from Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540.].

    • Search Google Scholar
    • Export Citation
  • ——, and Yamada, T., 1982: Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Phys., 20 , 851875.

  • Molinari, R. L., , Wilson W. D. , , and Leaman K. , 1985: Volume and heat transport of the Florida Current: April 1982 through August 1983. Science, 227 , 295297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooers, C. N. K., , and Wang J. , 1998: On the implementation of a 3-D circulation model for Prince William Sound, Alaska. Contin. Shelf Res., 18 , 253277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., , and Richardson W. S. , 1973: Seasonal variability of the Florida Current. J. Mar. Res., 31 , 144167.

  • Pasquill, F., , and Smith F. B. , 1983: Atmospheric Diffusion. 3d ed. Halsted Press, 437 pp.

  • Rogers, E., , Deaven D. G. , , and DiMego G. J. , 1995: The regional analysis system for the operational “early” Eta model: Original 80-km configuration and recent changes. Wea. Forecasting, 10 , 810825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F., , Lee T. N. , , and Zantopp R. , 1988: Variability of structure and transport of the Florida Current in the period range of days to seasonal. J. Phys. Oceanogr., 18 , 12091230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part 1: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flow. J. Fluid Mech., 180 , 529556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., 1996: Global linear stability of the 2-D shallow water equations: An application of the distributive theorem of roots for polynomials on the unit circle. Mon. Wea. Rev., 124 , 13011310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——,. 1999: A nowcast/forecast system for coastal ocean circulation (NFS-COC) using data assimilation. International Arctic Research Center–Frontier Research Program for Global Change Rep. 99-1, University of Alaska, Fairbanks, Fairbanks, Alaska, 97 pp.

    • Search Google Scholar
    • Export Citation
  • ——, and Ikeda, M., 1996: A 3D ocean general circulation model for mesoscale eddies-I: Meander simulation and linear growth rate. Acta. Oceanol. Sin., 15 , 3158.

    • Search Google Scholar
    • Export Citation
  • ——, and ——,. 1997: Diagnosing ocean unstable baroclinic waves and meanders using quasi-geostrophic equations and Q-vector method. J. Phys. Oceanogr., 27 , 11581172.

    • Search Google Scholar
    • Export Citation
  • ——, and Mooers, C. N. K., 1997: Three-dimensional perspectives of the Florida Current transport, potential vorticity, and related dynamical properties. Dyn. Atmos. Oceans, 27 , 135149.

    • Search Google Scholar
    • Export Citation
  • ——, Mysak, L. A., , and Ingram R. G. , 1994: A 3-D numerical simulation of Hudson Bay summer circulation: Topographic gyres, separations and coastal jets. J. Phys. Oceanogr., 24 , 24962514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ——, Mooers, C. N. K., , and Patrick V. , 1997: A three-dimensional tidal model for Prince William Sound, Alaska. Vol. 3, Computer Modelling of Seas and Coastal Region, J. R. Acinas and C. A. Brebbia, Eds., Computational Mechanics Publications, 95–104.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 94
PDF Downloads 14 14 1

A Nowcast/Forecast System for Coastal Ocean Circulation Using Simple Nudging Data Assimilation

View More View Less
  • 1 International Arctic Research Center–Frontier Research System for Global Change, University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study describes the establishment of a Nowcast/Forecast System for Coastal Ocean Circulation (NFS-COC), which was run operationally on a daily basis to provide users ocean surface currents and sea levels that vary with synoptic winds, and seasonal and mesoscale variability intrinsic to the Florida Current. Based on the requirements of users, information about possible oil spills, trajectories, etc., is also provided by NFS-COC.

NFS-COC consists of two parts: a 3D ocean nowcast/forecast circulation model, Princeton Ocean Model (POM), and a 2D trajectory model. POM is automatically run to forecast ocean variables for up to 2 days under forcing of the Florida Current inflow/outflow and the predicted surface winds, which are automatically transferred (by ftp) from a file server at the National Meteorological Center (now known as the National Centers for Environmental Prediction). The winds from the mesoscale Eta Model are called Eta winds. Then the trajectory model is run to predict the path due to 1) the POM-predicted ocean surface currents, 2) wind drift due to the predicted Eta winds, and 3) turbulent dispersion based on a random flight (Markov process) model. The predicted surface trajectories can be used to estimate the physical transport of oil spills (and other drifting or floating objects) in the Straits of Florida and many other coastal seas. A simple data assimilation scheme (nudging to the volume transport) is designed into the NFS-COC, although some powerful data assimilation methods exist for assimilating other physical variables.

Corresponding author address: Dr. Jia Wang, International Artic Research Center (IARC)–Frontier Research System for Global Change (FRSGC), University of Alaska, Fairbanks, P.O. Box 757335, Fairbanks, AK 99775-7335.Email: jwang@iarc.uaf.edu

Abstract

This study describes the establishment of a Nowcast/Forecast System for Coastal Ocean Circulation (NFS-COC), which was run operationally on a daily basis to provide users ocean surface currents and sea levels that vary with synoptic winds, and seasonal and mesoscale variability intrinsic to the Florida Current. Based on the requirements of users, information about possible oil spills, trajectories, etc., is also provided by NFS-COC.

NFS-COC consists of two parts: a 3D ocean nowcast/forecast circulation model, Princeton Ocean Model (POM), and a 2D trajectory model. POM is automatically run to forecast ocean variables for up to 2 days under forcing of the Florida Current inflow/outflow and the predicted surface winds, which are automatically transferred (by ftp) from a file server at the National Meteorological Center (now known as the National Centers for Environmental Prediction). The winds from the mesoscale Eta Model are called Eta winds. Then the trajectory model is run to predict the path due to 1) the POM-predicted ocean surface currents, 2) wind drift due to the predicted Eta winds, and 3) turbulent dispersion based on a random flight (Markov process) model. The predicted surface trajectories can be used to estimate the physical transport of oil spills (and other drifting or floating objects) in the Straits of Florida and many other coastal seas. A simple data assimilation scheme (nudging to the volume transport) is designed into the NFS-COC, although some powerful data assimilation methods exist for assimilating other physical variables.

Corresponding author address: Dr. Jia Wang, International Artic Research Center (IARC)–Frontier Research System for Global Change (FRSGC), University of Alaska, Fairbanks, P.O. Box 757335, Fairbanks, AK 99775-7335.Email: jwang@iarc.uaf.edu

Save