• Banakh, V. A., , Smalikho I. N. , , Köpp F. , , and Werner C. , 1995: Representativity of wind measurement with a cw Doppler lidar in the atmospheric boundary layer. Appl. Opt, 34 , 20552067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beniston, M., 1998: From Turbulence to Climate. Springer-Verlag, 328 pp.

  • Betout, P., , Ch. Werner , , and Burridge D. , 1989: Atmospheric Laser Doppler Instrument (ALADIN). ESA Lidar Working Group Rep. SP-1112, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Bilbro, J. W., 1980: Atmospheric laser Doppler velocimetry: An overview. Opt. Eng, 19 , 533542.

  • Bilbro, J. W., , DiMarzio C. , , Fitzjarrald D. , , Johnson S. , , and Jones W. , 1986: Airborne Doppler lidar measurements. Appl. Opt, 25 , 39523960.

  • Chanin, M. L., , Garnier A. , , Hauchecorne A. , , and Porteneuve J. , 1989:: A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett, 16 , 12731276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanin, M. L., , Cress A. , , and Wergen W. , 2001: Impact of wind profile observations on the German Weather Service's NWP system. Meteor. Z.,. . 10 , 91101.

    • Search Google Scholar
    • Export Citation
  • Curran, R. J., and and Coauthors, 1987: Laser Atmospheric Wind Sounder (LAWS). NASA Instrument Panel Rep. Vol. IIg, 134 pp.

  • Garnier, A., , and Chanin M. L. , 1992: Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere. Appl. Phys, B55 , 3540.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., , and Lönnberg P. , 1987: The verification of objective analysis: Diagnostics of analysis system performance. ECMWF Tech. Rep. 142, 223 pp.

    • Search Google Scholar
    • Export Citation
  • Korb, C. L., , Gentry B. M. , , Li S. X. , , and Flesia C. , 1998: Theory of the double-edge technique for Doppler lidar wind measurements. Appl. Opt, 37 , 30973104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34 , 505513.

  • McGill, M. J., , Skinner W. R. , , and Irgang T. D. , 1997: Analysis techniques for the recovery of winds and backscatter coefficients from a multiple channel incoherent Doppler lidar. Appl. Opt, 36 , 12531268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., , Hart W. D. , , McKay J. A. , , and Spinhirne J. D. , 1999: Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability. Appl. Opt, 38 , 63886397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, M. J., , and Cupp R. E. , 1990: Optimization a pulsed Doppler lidar. Appl. Opt, 29 , 41454157.

  • Rees, D., , and McDermid I. S. , 1990: Doppler lidar atmospheric wind sensor: Reevaluation of a 355-nm incoherent Doppler lidar. Appl. Opt, 29 , 41334144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rees, D., , Nelke G. , , Fricke K-H. , , von Zahn U. , , Singer W. , , von Cossert G. , , and Lloyd N. D. , 1996: The Doppler wind and temperature system of the Alomar lidar. J. Atmos. Terr. Phys, 58 , 18271842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., , Becker B. , , Eyre J. , , and Roquet H. , 1994: Theoretical studies of the impact of Doppler wind data: Preparation of a database. ESA Rep. CR(P)-3943, 187 pp.

    • Search Google Scholar
    • Export Citation
  • Streicher, J., , Leike I. , , and Werner C. , 1998: ALIENS: Atmospheric lidar end-to-end simulator. Proc. Fifth Int. Symp. on Atmospheric and Ocean Optics, Tomsk, Russia, International Society for Optical Engineering, 380–386.

    • Search Google Scholar
    • Export Citation
  • Vinnichenko, N. K., , Pinus N. Z. , , Shmetter S. M. , , and Shur G. N. , 1973: Turbulence in the Free Atmosphere. Consultants Bureau, 287 pp.

  • Werner, C., , Wildgruber G. , , and Streicher J. , 1991: Representativity of wind measurements from space. European Space Agency Contract 8664/90/HGE-1, 89 pp.

    • Search Google Scholar
    • Export Citation
  • Werner, C., and and Coauthors, 2001: Wind Instrument. Opt. Eng., in press.

  • Winzer, P., , Leeb W. , , Leike I. , , Streicher J. , , and Werner Ch , 1997: Coherent detection at low photon number per measurement interval (DELPHI). ESA/ESTEC Rep. Contract 11733/95/NL/CN, 157 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 8
PDF Downloads 10 10 5

Virtual Doppler Lidar Instrument

View More View Less
  • 1 Institute of Atmospheric Physics, DLR, Wessling, Germany
  • | 2 Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk, Russia
  • | 3 German Weather Service, Offenbach, Germany
© Get Permissions
Restricted access

Abstract

Doppler lidars measure the range-resolved line-of-sight wind component by extracting the Doppler shift of radiation backscattered from atmospheric aerosols and molecules. A virtual instrument was developed to simulate wind measurements by flying virtually over the atmosphere. The atmosphere contains all components that influence the lidar, that is, wind, turbulence, aerosols, clouds, etc. For a selected time period, a dataset of the atmospheric conditions from the global model and the local model was provided by the German Weather Service. Three different Doppler lidar systems were simulated for this report: a coherent airborne conical scanning 10-μm Doppler lidar, a 10-μm and a 2-μm spaceborne system, and a spaceborne incoherent ultraviolet Doppler lidar.

Corresponding author address: Dr. Christian Werner, DLR-Institute of Atmospheric Physics, P.O. Box 1116, D-82230 Wessling, Germany. Email: christian.werner@dlr.de

Abstract

Doppler lidars measure the range-resolved line-of-sight wind component by extracting the Doppler shift of radiation backscattered from atmospheric aerosols and molecules. A virtual instrument was developed to simulate wind measurements by flying virtually over the atmosphere. The atmosphere contains all components that influence the lidar, that is, wind, turbulence, aerosols, clouds, etc. For a selected time period, a dataset of the atmospheric conditions from the global model and the local model was provided by the German Weather Service. Three different Doppler lidar systems were simulated for this report: a coherent airborne conical scanning 10-μm Doppler lidar, a 10-μm and a 2-μm spaceborne system, and a spaceborne incoherent ultraviolet Doppler lidar.

Corresponding author address: Dr. Christian Werner, DLR-Institute of Atmospheric Physics, P.O. Box 1116, D-82230 Wessling, Germany. Email: christian.werner@dlr.de

Save