• Biegert, C., , and Wende G. , 2000: Datenaufzeichnung von Garmin GPS-Empfängern mit dem Ziel der hochgenauen Differential GPS Positionsbestimmung von Flugzeugen oder Fallsonden. Internal Report, Institut für Meteorologie und Klimaforschung, Forschungszentrum Universität Karlsruhe, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Call, D. B., 1997: A new GPS rawinsonde system. Atmospheric Instrumentation Research Inc., 5 pp.

  • Call, D. B., , Lassman S. J. , , Whitaker S. D. , , Horn R. D. , , and Lovelace L. , 1987: Digital radiosondes received by digital radiotheodolite provides fully automated upper air soundings. Extended Abstracts, Sixth Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, Amer. Meteor. Soc., 347–352.

    • Search Google Scholar
    • Export Citation
  • Cole, H., 1997: NCAR licenses VAISALA Inc. to build the new NCAR GPS dropsonde and aircraft data system. Vaisala News, 142 , 1517.

  • Corner, B. R., , Palmer R. D. , , and Larsen M. F. , 1999: A new radiosonde system for profiling the lower troposphere. J. Atmos. Oceanic Technol, 16 , 828836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corsmeier, U., , and Kottmeier C. , 2000: Konvektionsexperiment 2000 (KONVEX 2000), operations plan. Internal Report, Forschungszentrum Universität Karlsruhe, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Hartmann, J., , Borchert A. , , Freese D. , , Kottmeier C. , , Nagel D. , , and Reuter A. , 1996: Radiation and eddy flux experiment 1995. Berichte zur Polarforschung No. 218, Alfred Wegner Institut for Polar and Marine Research, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Ikonen, I., 1997: Minidropsonde for low-flying aircraft and unmanned aerial vehicles. Vaisala News, 142 , 1819.

  • Ivanov, A., , Kats A. , , Kurnosenko S. , , Nash N. , , and Zaitseva N. , 1991:: WMO international radiosonde comparison. Instruments and Observing Methods Rep. 40, WMO/TD-No. 451, 160 pp.

    • Search Google Scholar
    • Export Citation
  • Kolle, O., , and Kalthoff N. , 1993: Intercomparison of radiosonde data during the TRACT campaign, summer 1992. EUROTRAC Annual Rep. 1992, Part II, TRACT, EUROTRAC ISS, 142–150.

    • Search Google Scholar
    • Export Citation
  • Oakley, T., 1998: Report by the rapporteur on radiosonde compatibility monitoring. Instrument and Observing Systems Rep. 72, WMO-TD-No. 886, 161 pp.

    • Search Google Scholar
    • Export Citation
  • Richner, H., Ed.,. 1999: Grundlagen aerologischer Messungen speziell mittels der Schweizer Sonde SRS 400. Veröffentlichungen der SMA-Meteo-Schweiz 61, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Richner, H., , Joss J. , , and Ruppert P. , 1996: A water hypsometer utilizing high-precision thermocouples. J. Atmos. Oceanic Technol, 13 , 175182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, P., 1991: Hypsometer having controlled heating, particularly for use in meteorological radiosondes. U.S. Patent No. 5048337; European Patent No. 0427662.

    • Search Google Scholar
    • Export Citation
  • Ruppert, P., 1999: SRS 400—Konzepte und Techniken von Sensorik und Telemetrie. Grundlagen aerologischer Messungen speziell mittels der Schweizer Sonde SRS 400. Veröffentlichungen der SMA-Meteo-Schweiz 61, 55–67.

    • Search Google Scholar
    • Export Citation
  • Saarnimo, T., 1997: Reliable satellite-based GPS. Vaisala News, 142 , 46.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 3
PDF Downloads 15 15 3

A New Aerological Sonde for Dense Meteorological Soundings

View More View Less
  • 1 Institut für Meteorologie und Klimaforschung, Universität Karlsruhe Forschungszentrum Karlsruhe, Karlsruhe, Germany
  • | 2 Etewe Messtechnik GmbH, Karlsruhe, Germany
  • | 3 Meteolabor, Wetzikon, Switzerland
  • | 4 Institut für Meteorologie und Klimaforschung, Universität Karlsruhe Forschungszentrum Karlsruhe, Karlsruhe, Germany
© Get Permissions
Restricted access

Abstract

A new recoverable aerological sonde has been developed for studying mesoscale atmospheric processes. It allows for precise temperature, humidity, pressure, and wind measurements with (i) high spatial resolution (e.g., up to 100 m) as a parachute dropsonde version and (ii) high temporal resolution as balloon sonde version. The sonde comprises sensor elements of a commercial radiosonde, a 12-channel GPS receiver, a mobile telephone, a microcontroller as a central processing unit, a 4-Mbyte flash memory, a power pack, and a UHF transmitter. Data are stored internally and no data telemetry is used except for GPS data of the landing location, which are transmitted via mobile telephone for sonde recovery. Accurate offline differential GPS (DGPS) wind solutions are obtained by simultaneous GPS reception of a stationary receiver. Optionally, DGPS-based wind data may be obtained by reception of GPS corrections transmitted via VHF or satellite. After removal of selective availability from GPS signals in May 2000, winds based on GPS stand-alone solutions only are found to be of similar quality as DGPS winds. Arbitrarily, many sondes (typically 30 sondes) can be operated simultaneously and no ground-based or aircraft-based station is required for this purpose. Extensive tests of the dropsonde version have proved the reliability of the entire system and the acquired data. Due to the high probability of recovery, the possibility of multiple use without calibration or major refurbishment, and the optional extension by other sensors, the system is considered an alternative to standard sondes applied for research purposes.

Corresponding author address: Dr. Christoph Kottmeier, Institut für Meterorologie und Klimaforschung, Universität Karlsruhe Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344 Germany. Email: ckottmei@imk.fzk.de

Abstract

A new recoverable aerological sonde has been developed for studying mesoscale atmospheric processes. It allows for precise temperature, humidity, pressure, and wind measurements with (i) high spatial resolution (e.g., up to 100 m) as a parachute dropsonde version and (ii) high temporal resolution as balloon sonde version. The sonde comprises sensor elements of a commercial radiosonde, a 12-channel GPS receiver, a mobile telephone, a microcontroller as a central processing unit, a 4-Mbyte flash memory, a power pack, and a UHF transmitter. Data are stored internally and no data telemetry is used except for GPS data of the landing location, which are transmitted via mobile telephone for sonde recovery. Accurate offline differential GPS (DGPS) wind solutions are obtained by simultaneous GPS reception of a stationary receiver. Optionally, DGPS-based wind data may be obtained by reception of GPS corrections transmitted via VHF or satellite. After removal of selective availability from GPS signals in May 2000, winds based on GPS stand-alone solutions only are found to be of similar quality as DGPS winds. Arbitrarily, many sondes (typically 30 sondes) can be operated simultaneously and no ground-based or aircraft-based station is required for this purpose. Extensive tests of the dropsonde version have proved the reliability of the entire system and the acquired data. Due to the high probability of recovery, the possibility of multiple use without calibration or major refurbishment, and the optional extension by other sensors, the system is considered an alternative to standard sondes applied for research purposes.

Corresponding author address: Dr. Christoph Kottmeier, Institut für Meterorologie und Klimaforschung, Universität Karlsruhe Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344 Germany. Email: ckottmei@imk.fzk.de

Save