• Chelton, D. B., , and Schlax M. G. , 1996: Global observations of oceanic Rossby waves. Science, 272 , 234238.

  • Cheney, R., , Miller L. , , Agreen R. , , Doyle N. , , and Lillibridge J. , 1994:: TOPEX/POSEIDON: The 2-cm solution. J. Geophys. Res, 99 , 2455524563.

  • Cipollini, P., , Cromwell D. , , and Quartly G. D. , 1996: Variability of Rossby wave propagation in the North Atlantic from TOPEX/POSEIDON altimetry. Proc. IEEE Int. Geoscience and Remote Sensing Symp. Lincoln, NE, IEEE, 91–93.

    • Search Google Scholar
    • Export Citation
  • Cipollini, P., , Cromwell D. , , and Quartly G. D. , 1999: Observations of Rossby Wave propagation in the Northeast Atlantic with TOPEX/POSEIDON altimetry. Adv. Space Res, 22 , 15531556.

    • Search Google Scholar
    • Export Citation
  • Cipollini, P., , Cromwell D. , , Jones M. S. , , Quartly G. D. , , and Challenor P. G. , 1997: Concurrent TOPEX/POSEIDON altimeter and Along-Track Scanning Radiometer observations of Rossby wave propagation near 34°N in the northeast Atlantic. Geophys. Res. Lett, 24 , 889892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deans, S. R., 1983: The Radon Transform and Some of Its Applications. John Wiley and Sons, 289 pp.

  • Dewar, W., 1998: On too-fast baroclinic planetary waves in the general circulation. J. Phys. Oceanogr, 28 , 17391758.

  • Fu, L-L., , Christensen E. J. , , Yamarone Jr. C. A. , , Lefebvre M. , , Menard Y. , , Dorrer M. , , and Escudier P. , 1994: TOPEX/POSEIDON mission overview. J. Geophys. Res, 99 , 2436924381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hill, K., , Robinson I. S. , , and Cipollini P. , 2000: Propagation characteristics of extratropical planetary waves observed in the ATSR global sea surface temperature record. J. Geophys. Res, 105 , 2192721945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hough, S. S., 1897: On the application of harmonic analysis to the dynamical theory of the tides. Part I: On Laplace's ‘oscillations of the first species', and on the dynamics of ocean currents. Philos. Trans. Roy. Soc. London, 189A , 201257.

    • Search Google Scholar
    • Export Citation
  • Jacobs, G. A., , Hurlburt H. E. , , Kindle J. C. , , Metzger E. J. , , Mitchell J. L. , , Teague W. J. , , and Wallcraft A. J. , 1994: Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature, 370 , 360363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , and Spiesberger J. L. , 1998: Observations of El Niño–Southern Oscillation induced Rossby waves in the northeast Pacific using in situ data. J. Geophys. Res, 103 , 2458524596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , and Blundell J. R. , 1999: The effect of bottom topography on the speed of long extratropical planetary waves. J. Phys. Oceanogr, 29 , 26892710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., , Chelton D. B. , , and de Szoeke R. , 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr, 27 , 19461966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P-Y., , and Minster J-F. , 1993: Sea level variability and semiannual Rossby waves in the south Atlantic subtropical gyre. J. Geophys. Res, 98 , 1231512326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1994: The eleven-year El Niño? Nature, 370 , 326327.

  • Parke, M. E., , Born G. , , Leben R. , , McLaughlin C. , , and Tierney C. , 1998: Altimeter sampling characteristics using a single satellite. J. Geophys. Res, 103 , 1051310526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polito, P. S., , and Cornillon P. , 1997: Long baroclinic Rossby waves detected by TOPEX/POSEIDON. J. Geophys. Res, 102 , 32153235.

  • Qiu, B., , Miao W. , , and Müller P. , 1997: Propagation and delay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr, 27 , 24052417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radon, J., 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,. Math.-Phys. Kl, 69 , 262267. [For English translation, see Deans (1983), 204–217.].

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc, 66 , . (Suppl.),. 6897.

  • Subrahmanyam, B., , Robinson I. S. , , Blundell J. R. , , and Challenor P. G. , 2001: Indian Ocean Rossby waves observed in TOPEX/POSEIDON altimeter data and in model simulations. Int. J. Remote Sens.,22, 141–167.

    • Search Google Scholar
    • Export Citation
  • Tokmakian, R. T., , and Challenor P. G. , 1993: Observations in the Canary Basin and the Azores Frontal Region using Geosat data. J. Geophys. Res, 98 , 47614773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., , Chao Y. , , and Tai C-K. , 1998: Coupling of biennial oceanic Rossby waves with the overlying atmosphere in the Pacific basin. J. Phys. Oceanogr, 28 , 12361251.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 16
PDF Downloads 50 50 17

Use of the 3D Radon Transform to Examine the Properties of Oceanic Rossby Waves

View More View Less
  • 1 James Rennell Division for Ocean Circulation and Climate, Southampton Oceanography Centre, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

One of the most successful applications of satellite-borne radar altimeter data over the oceans in recent years has been the extraction of information about long-wavelength baroclinic Rossby (or planetary) waves, which play a significant role in ocean circulation and climate dynamics. These waves cross ocean basins from east to west at speeds of a few centimeters per second at midlatitudes. The cross-basin propagation time may therefore be several months or even years, and an accurate estimation of the speed of the waves is important. Methods are reviewed for obtaining information on Rossby wave velocity from altimetry data, particularly the two-dimensional Radon transform. Unfortunately, the use of longitude–time plots, although it allows the estimation of the zonal phase speeds, does not give any information on the velocity vector when the propagation of the waves is not purely zonal (east–west). As shown here, the two-dimensional Radon transform can be generalized to three dimensions, enabling not only the true propagation velocity component to be determined but also the direction of the waves and thus any deviation from the pure-westward case. As examples of the application of this extended technique, maps of direction, speed, and energy of Rossby waves in the North Atlantic Ocean are shown.

Corresponding author address: David Cromwell, James Rennell Division for Ocean Circulation and Climate, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom. Email: ddc@soc.soton.ac.uk

Abstract

One of the most successful applications of satellite-borne radar altimeter data over the oceans in recent years has been the extraction of information about long-wavelength baroclinic Rossby (or planetary) waves, which play a significant role in ocean circulation and climate dynamics. These waves cross ocean basins from east to west at speeds of a few centimeters per second at midlatitudes. The cross-basin propagation time may therefore be several months or even years, and an accurate estimation of the speed of the waves is important. Methods are reviewed for obtaining information on Rossby wave velocity from altimetry data, particularly the two-dimensional Radon transform. Unfortunately, the use of longitude–time plots, although it allows the estimation of the zonal phase speeds, does not give any information on the velocity vector when the propagation of the waves is not purely zonal (east–west). As shown here, the two-dimensional Radon transform can be generalized to three dimensions, enabling not only the true propagation velocity component to be determined but also the direction of the waves and thus any deviation from the pure-westward case. As examples of the application of this extended technique, maps of direction, speed, and energy of Rossby waves in the North Atlantic Ocean are shown.

Corresponding author address: David Cromwell, James Rennell Division for Ocean Circulation and Climate, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom. Email: ddc@soc.soton.ac.uk

Save