• Ansmann, A., , Riebesell M. , , and Weitkamp C. , 1990: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett, 15 , 746748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., , Riebesell M. , , Wandinger U. , , Weitkamp C. , , Voss E. , , Lahmann W. , , and Michaelis W. , 1992a: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, and lidar ratio. Appl. Phys, B55 , 1828.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., , Wandinger U. , , Riebesell M. , , Weitkamp C. , , and Michaelis W. , 1992b: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt, 31 , 71137131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arshinov, Y., , and Bobrovnikov S. , 1999: Use of a Farby-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules. Appl. Opt, 38 , 46354638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., , and Reichardt J. , 2000: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar using an interference-filter-based polychromator. Appl. Opt, 39 , 13721378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bösenberg, J., and and Coauthors, 2001: EARLINET: A European aerosol research lidar network. Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, Eds., Ecole Polytechnique, 155–158.

    • Search Google Scholar
    • Export Citation
  • Cairo, F., , Donfrancesco G. Di , , Adriani A. , , Pulvirenti L. , , and Fierli F. , 1999: Comparisons of various linear depolarization parameters measured by lidar. Appl. Opt, 38 , 44254432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , Hlavka D. L. , , Spinhirne J. D. , , Ferrare R. A. , , and Turner D. D. , 2000: Automated aerosol retrieval algorithms for ARM micro pulse lidars. Preprints, Symp. on Lidar Atmosphere Monitoring, Long Beach, CA, Amer. Meteor. Soc., 71–74.

    • Search Google Scholar
    • Export Citation
  • Cooney, J. A., 1972: Measurement of atmospheric temperature profiles by Raman backscatter. J. Appl. Meteor, 11 , 108112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , and King M. D. , 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res, 105 , 2067320696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., , Smith W. L. , , Knuteson R. O. , , Revercomb H. E. , , Woolf H. M. , , and Howell H. B. , 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor, 37 , 857875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and and Coauthors, 2000: Retrieval and visualization of AERIPLUS temperature and moisture profiles for assimilation into ARM single-column models. Proc. 10th Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX. [Available online at http://www.arm.gov/docs/documents/technical/conf_0003/feltz_wf.pdf.].

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., , Melfi S. H. , , Whiteman D. N. , , and Evans K. D. , 1992: Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991. Geophys. Res. Lett, 19 , 15991602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., , Melfi S. H. , , Whiteman D. N. , , Evans K. D. , , Schmidlin F. J. , , and O'C. Starr D. , 1995: A comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol, 12 , 11771195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., , Melfi S. H. , , Whiteman D. N. , , Evans K. D. , , and Leifer R. , 1998: Raman lidar measurements of aerosol extinction and backscattering: Methods and comparisons. J. Geophys. Res, 103 , 1966319672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and and Coauthors, 2000a: Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX. J. Geophys. Res, 105 , 99359948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., , Turner D. D. , , Heilman L. A. , , Feltz W. F. , , Tooman T. P. , , Dubovik O. , , and Halthore R. , 2000b: Characterization of the atmospheric state over the SGP using Raman lidar and AERI/GOES measurements. Proc. 10th Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX. [Available online at http://www.arm.gov/docs/documents/technical/conf_0003/ferrare-ra.pdf.].

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., , Turner D. D. , , Heilman L. A. , , Feltz W. F. , , Dubovik O. , , and Tooman T. P. , 2001: Raman lidar measurements of aerosol extinction-to-backscatter ratio over the Southern Great Plains. J. Geophy. Res.,106, 20 333–20 348.

    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., 1998: Polarization lidar returns from aerosols and thin clouds: A framework for the analysis. Appl. Opt, 37 , 55055508.

  • Godin, S., and and Coauthors, 1999: Ozone differential absorption lidar algorithm intercomparison. Appl. Opt, 38 , 62256236.

  • Goldsmith, J. E. M., , Blair F. H. , , Bisson S. E. , , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt, 37 , 49794990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., , and Eloranta E. W. , 1991: University of Wisconsin high spectral resolution lidar. Opt. Eng, 30 , 612.

  • Harrison, L., , and Michalsky J. , 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt, 33 , 51265132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., , Michalsky J. , , and Berndt J. , 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt, 33 , 51185125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ, 66 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and and Coauthors, 2000: A comparison of aerosol optical thickness derived from ground-based and airborne measurements. J. Geophys. Res, 105 , 97919806.

    • Search Google Scholar
    • Export Citation
  • Keckhut, P., , Hauchecorne A. , , and Chanin M. L. , 1993: A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars. J. Atmos. Oceanic Technol, 10 , 850867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt, 20 , 211220.

  • Melfi, S. H., , Whiteman D. N. , , and Ferrare R. A. , 1989: Observation of atmospheric fronts using Raman lidar moisture measurements. J. Appl. Meteor, 28 , 789806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , Holt F. C. , , Schmidt T. J. , , Aune R. M. , , Schreiner A. J. , , Wade G. S. , , and Gray D. G. , 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc, 79 , 20592077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, E. R., , Wang J. , , and Cole H. L. , 1999: Correction for dry bias in Vaisala radiosonde RH data. Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ. [Available online at http://www.arm.gov/pub/docs/documents/technical/conf_9903/miller-er-99.pdf.].

    • Search Google Scholar
    • Export Citation
  • Murayama, T., , Okamoto H. , , Kaneyasu N. , , Kamataki H. , , and Miura K. , 1999: Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles. J. Geophys. Res, 104 , 3178131792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murayama, T., and and Coauthors, 2001: Lidar network observation of Asian dust. Advances in Laser Remote Sensing: Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, Eds., Ecole Polytechnique, 169–172.

    • Search Google Scholar
    • Export Citation
  • Nedeljkovic, D., , Hauchecorne A. , , and Chanin M. L. , 1993: Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens, 31 , 90101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penney, G. M., , and Lapp M. , 1976: Raman-scattering cross-section for water vapor. J. Opt. Soc. Amer, 66 , 422425.

  • Pilinis, C., , Sandis S. N. , , and Seinfeld J. H. , 1995: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res, 100 , 1873918754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., 2000: Science plan for the 3d ARM water vapor IOP and the ARM-FIRE water vapor experiment (AFWEX) at the ARM SGP CART site, Lamont, OK. [Available online at http://www.arm.gov/docs/iops/2000/sgp2000afwex/afwex.html.].

    • Search Google Scholar
    • Export Citation
  • Russell, P. B., , Swissler T. J. , , and McCormick M. P. , 1979: Methodology for error analysis and simulation of lidar measurements. Appl. Opt, 18 , 37833797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc, 72 , 18481866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherlock, V., , Hauchecorne A. , , and Lenoble J. , 1999: Methodology for the independent calibration of Raman backscatter water-vapor lidar systems. Appl. Opt, 38 , 58165837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibata, T., , Sakai T. , , Hayashi M. , , Ojio T. , , Kwon S-A. , , and Iwasaka Y. , 1996: Raman lidar observations: Simultaneous measurements of water vapor, temperature, and aerosol vertical profiles, part II. J. Geomag. Geoelectr, 48 , 11371144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipley, S. T., , Tracy D. H. , , Eloranta E. W. , , Trauger J. T. , , Sroga J. T. , , Roesler F. L. , , and Weinman J. A. , 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols: 1. Theory and implementation. Appl. Opt, 22 , 37163724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , Holben B. N. , , Eck T. F. , , Dubovik O. , , and Slutsker I. , 2000: Cloud screening and quality control algorithms for the AERONET database. Remote Sens. Environ.,73, 337–349.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., , Feltz W. F. , , Knuteson R. O. , , Revercomb H. E. , , Howell H. B. , , and Woolf H. M. , 1999: The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements. J. Atmos. Oceanic Technol, 16 , 323333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , Reagan J. A. , , and Hermann B. M. , 1980: Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique. J. Appl. Meteor, 19 , 426438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., , and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation testbed. Bull. Amer. Meteor. Soc, 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar measurements during the Atmospheric Radiation Measurement program's 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol, 16 , 10621076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Shippert T. R. , , Brown P. D. , , Clough S. A. , , Knuteson R. O. , , Revercomb H. E. , , and Smith W. L. , 1998: Long-term analysis of observed and line-by-line calculations of longwave surface spectral radiance and the effect of scaling the water vapor profiles. Proc. 8th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ. [Available online at http://www.arm.gov/pub/docs/documents/technical/conf_9803/turner-98.pdf.].

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Feltz W. F. , , and Ferrare R. A. , 2000: Continuous water vapor profiles from ground-based operational active and passive remote sensors. Bull. Amer. Meteor. Soc, 81 , 13011317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Ferrare R. A. , , and Brasseur L. A. , 2001: Average aerosol extinction and water vapor profiles over the Southern Great Plains. Geophys. Res. Lett., in press.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., , Waring D. P. , , Thomas L. , , and Metev V. , 1988: Humidity measurements in the free troposphere using Raman backscatter. Quart. J. Roy. Meteor. Soc, 114 , 30683082.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 1999: Application of statistical methods to the determination of slope in lidar data. Appl. Opt, 38 , 33603369.

  • Whiteman, D. N., , and Melfi S. H. , 1999: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J. Geophys. Res, 104 , 3141131419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , Melfi S. H. , , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. Appl. Opt, 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 204 6
PDF Downloads 60 60 9

Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar

View More View Less
  • 1 Pacific Northwest National Laboratory, Richland, Washington
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 SAIC, NASA Langley Research Center, Hampton, Virginia
  • | 4 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
  • | 5 Sandia National Laboratories, Livermore, California
© Get Permissions
Restricted access

Abstract

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical thickness, from the operational Raman lidar at the Atmospheric Radiation Measurement (ARM) program's site in north-central Oklahoma. These routines have been devised to maintain the calibration of these data products, which have proven sensitive to the automatic alignment adjustments that are made periodically by the instrument. Since this Raman lidar does not scan, aerosol extinction cannot be directly computed below approximately 800 m due to the incomplete overlap of the outgoing laser beam with the detector's field of view. Therefore, the extinction-to-backscatter ratio at 1 km is used with the aerosol backscatter coefficient profile to compute aerosol extinction from 60 m to the level of complete overlap. Comparisons of aerosol optical depth derived using these algorithms with a collocated CIMEL sun photometer for clear-sky days over an approximate 2-yr period show a slope of 0.90 with a correlation coefficient of 0.884. Furthermore, comparing the aerosol extinction profile retrieved from this system with that from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's scanning Raman lidar agrees within 10% for the single available case.

Corresponding author address: David D. Turner, Climate Dynamics Group, MS K9-24, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. Email: dave.turner@pnl.gov

Current affiliation: University of Wisconsin—Madison, Madison, WI.

Abstract

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical thickness, from the operational Raman lidar at the Atmospheric Radiation Measurement (ARM) program's site in north-central Oklahoma. These routines have been devised to maintain the calibration of these data products, which have proven sensitive to the automatic alignment adjustments that are made periodically by the instrument. Since this Raman lidar does not scan, aerosol extinction cannot be directly computed below approximately 800 m due to the incomplete overlap of the outgoing laser beam with the detector's field of view. Therefore, the extinction-to-backscatter ratio at 1 km is used with the aerosol backscatter coefficient profile to compute aerosol extinction from 60 m to the level of complete overlap. Comparisons of aerosol optical depth derived using these algorithms with a collocated CIMEL sun photometer for clear-sky days over an approximate 2-yr period show a slope of 0.90 with a correlation coefficient of 0.884. Furthermore, comparing the aerosol extinction profile retrieved from this system with that from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's scanning Raman lidar agrees within 10% for the single available case.

Corresponding author address: David D. Turner, Climate Dynamics Group, MS K9-24, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352. Email: dave.turner@pnl.gov

Current affiliation: University of Wisconsin—Madison, Madison, WI.

Save