• Ahmad, B., , and Tyler G. L. , 1999: Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large-scale horizontal gradients. J. Geophys. Res, 104 , 39713992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderssen, R. S., , and Bloomfield P. , 1974a: A time series approach to numerical differentiation. Technometrics, 16 , 6975.

  • Anderssen, R. S., , and Bloomfield P. , 1974b: Numerical procedures for non-exact data. Numer. Math, 22 , 157182.

  • Eshleman, V. R., 1973: The radio occultation method for the study of planetary atmospheres. Planet. Space Sci, 21 , 15211531.

  • Eyre, J. R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. ECMWF Tech. Memo., 199, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Feng, D. D., , and Herman B. M. , 1999: Remotely sensing the earth's atmosphere using the Global Positioning System—The GPS/MET data analysis. J. Atmos. Oceanic Technol, 16 , 9891002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fjeldbo, G., , Kliore G. A. , , and Eshleman V. R. , 1971: The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J, 76 , 123140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavrik, A. L., , and Samoznaev L. N. , 1985: Analysis of errors in radio-occultation results for the daytime ionosphere of Venus due to its asphericity. Kosm. Issled, 23 , 148157.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2001: Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Hoeg, P., , Hauchecorne A. , , Kirchengast G. , , Syndergaard S. , , Belloul B. , , Leitinger R. , , and Rothleitner W. , 1995: Derivation of the atmospheric properties using radio occultation technique. Danish Meteorological Institute Scientific Rep. 95-4, 208 pp.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., , Sokolovskiy S. , , Anthes R. , , and Vandenberghe F. , 2001: Assimilation of GPS radio occultation data for numerical weather prediction. Applications of Constellation Observing System for Meteorology, Ionosphere and Climate, L.-C. Lee, C. Rocken, and R. Kurinski, Eds., Springer, 157–186.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and and Coauthors, 1996: Initial results of radio occultation observations of Earth's atmosphere using the global positioning system. Science, 271 , 11071110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , Hajj G. A. , , Schofield J. T. , , Linfield R. P. , , and Hardy K. R. , 1997: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res, 102 , 2342923465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., , Hajj G. A. , , Leroy S. , , and Herman B. , 2001: The GPS radio occultation technique. Applications of Constellation Observing System for Meteorology, Ionosphere and Climate, L.-C. Lee, C. Rocken, and R. Kurinski, Eds., Springer, 53–114.

    • Search Google Scholar
    • Export Citation
  • Lee, L-C., , Rocken C. , , and Kursinski R. , Eds.,. 2001: Applications of Constellation Observing System for Meteorology, Ionosphere and Climate. Springer, 384 pp.

    • Search Google Scholar
    • Export Citation
  • Lipa, B., , and Tyler G. L. , 1979: Statistical and computational uncertainties in atmospheric profiles from radio occultation: Mariner 10 at Venus. Icarus, 39 , 192208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc, 112 , 11771194.

  • Matsumura, T., , Derber J. C. , , Yoe J. G. , , Vandenberghe F. , , and Zou X. , 1999: The inclusion of GPS limb sounding data into NCEP's global data assimilation system. NWS Office Note 426, NOAA/NCEP/NWS, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Palmer, P. I., , Barnett J. J. , , Eyre J. R. , , and Healy S. B. , 2000: A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity and surface pressure. J. Geophys. Res, 105 , 1751317526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1959: Numerical integration of the primitive equation on the hemisphere. Mon. Wea. Rev, 87 , 333345.

  • Rocken, C., and and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res, 102 , 2984929866.

  • Rocken, C., , Kuo Y-H. , , Schreiner W. S. , , Hunt D. , , Sokolovskiy S. , , and McCormik C. , 2001: COSMIC system description. Applications of Constellation Observing System for Meteorology, Ionosphere and Climate, L.-C. Lee, C. Rocken, and R. Kurinski, Eds., Springer, 21–52.

    • Search Google Scholar
    • Export Citation
  • Sela, J. G., 1980: Spectral modeling at the National Meteorological Center. Mon. Wea. Rev, 108 , 12791292.

  • Syndergaard, S., 1998: Modeling the impact of the earth's oblateness on the retrieval of temperature and pressure profiles from limb sounding. J. Atmos. Solar–Terr. Phys, 60 , 171180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanenko, N. N., 1971: The Method of Fractional Steps. Springer, 160 pp. Translated by M. Holt.

  • Ware, R., and and Coauthors, 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc, 77 , 1940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and and Coauthors, 1999: A raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res, 104 , 2230122318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., , Wang B. , , Liu H. , , Anthes R. A. , , Matsumura T. , , and Zhu Y-J. , 2000: Use of GPS/MET refraction angles in 3D variational analysis. Quart. J. Roy. Meteor. Soc, 126 , 30133040.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 2
PDF Downloads 28 28 3

A Statistical Estimate of Errors in the Calculation of Radio-Occultation Bending Angles Caused by a 2D Approximation of Ray Tracing and the Assumption of Spherical Symmetry of the Atmosphere

View More View Less
  • 1 The Florida State University, Tallahassee, Florida
  • | 2 The Florida State University, Tallahassee, Florida, and LASG, Institute of Atmospheric Physics, CAS, Beijing, China
  • | 3 University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Atmospheric data from National Centers for Environmental Prediction (NCEP) analyses and orbital parameters from 133 real Global Positioning System (GPS) meteorological data soundings are used to compute the “true” bending angle profiles using an accurate 3D ray-tracing procedure. They are then compared with approximate profiles obtained using the spherical symmetry assumption and an efficient 2D ray-tracing model. The average fractional error of the bending angles due to the spherical symmetry assumption is less than 0.15%. The average fractional error due to the use of the 2D ray-tracing model is slightly greater than that due to the spherical symmetry assumption. The vertical error correlations due to the spherical symmetry assumption are sharp between 6 and 8 km and broader above and below this layer. The vertical error correlations associated with the 2D forward model show a nearly diagonal structure below 15 km with high correlation confined to a 2-km layer centered at the observation level.

Corresponding author address: Dr. X. Zou, Department of Meteorology, The Florida State University, 404 Love Building, Tallahassee, FL 32306. Email: zou@met.fsu.edu

Abstract

Atmospheric data from National Centers for Environmental Prediction (NCEP) analyses and orbital parameters from 133 real Global Positioning System (GPS) meteorological data soundings are used to compute the “true” bending angle profiles using an accurate 3D ray-tracing procedure. They are then compared with approximate profiles obtained using the spherical symmetry assumption and an efficient 2D ray-tracing model. The average fractional error of the bending angles due to the spherical symmetry assumption is less than 0.15%. The average fractional error due to the use of the 2D ray-tracing model is slightly greater than that due to the spherical symmetry assumption. The vertical error correlations due to the spherical symmetry assumption are sharp between 6 and 8 km and broader above and below this layer. The vertical error correlations associated with the 2D forward model show a nearly diagonal structure below 15 km with high correlation confined to a 2-km layer centered at the observation level.

Corresponding author address: Dr. X. Zou, Department of Meteorology, The Florida State University, 404 Love Building, Tallahassee, FL 32306. Email: zou@met.fsu.edu

Save