Development of a Nonlinear Statistical Method for Estimating the Downward Longwave Radiation at the Surface from Satellite Observations

Hai-Tien Lee Cooperative Institute for Climate Studies, Department of Meteorology, University of Maryland, College Park, Maryland

Search for other papers by Hai-Tien Lee in
Current site
Google Scholar
PubMed
Close
and
Robert G. Ellingson Cooperative Institute for Climate Studies, Department of Meteorology, University of Maryland, College Park, Maryland

Search for other papers by Robert G. Ellingson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m–2 for clear-sky conditions, and about 4 to 8 W m–2 for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies.

Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m–2 when there is a ±10% uncertainty in cloud amount and a ±100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m–2.

This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 W m–2 and are unbiased in most conditions.

The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.

Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author address: Dr. Hai-Tien Lee, Department of Meteorology, University of Maryland, College Park, MD 20742. Email: lee@wam.umd.edu

Abstract

This paper develops a nonlinear statistical method that uses satellite radiance observations directly to estimate the downward longwave radiation (DLR) at the earth's surface, a necessary component of the surface energy budget. The proposed technique has rms regression errors of about 9 W m–2 for clear-sky conditions, and about 4 to 8 W m–2 for overcast conditions, depending on the cloud levels. It is shown that this technique can produce unbiased estimates over a large range of meteorological conditions, which is crucial for climate studies.

Sensitivity studies show that the DLR is most sensitive to errors in the cloud amount on average. Overall, the combined errors for an instantaneous DLR estimate, excluding the effects of the surface pressure errors, range from about 7 to 12 W m–2 when there is a ±10% uncertainty in cloud amount and a ±100 hPa uncertainty in cloud-base pressure. When the cloud amount uncertainty rises to 30%, the combined DLR error ranges from about 10 to 25 W m–2.

This clear-sky DLR estimation technique was validated preliminarily by using simulated radiation data. The DLR differences between estimated and calculated values have a standard deviation of about 9 W m–2 and are unbiased in most conditions.

The validity of the DLR estimation technique has been demonstrated; however, validation for cloudy conditions, comparison with surface observations, and improvements related to surface pressure dependence and skin temperature discontinuity are left for future study.

Current affiliation: Department of Meteorology, The Florida State University, Tallahassee, Florida

Corresponding author address: Dr. Hai-Tien Lee, Department of Meteorology, University of Maryland, College Park, MD 20742. Email: lee@wam.umd.edu

Save
  • Augustine, J. A., DeLuisi J. J. , and Long C. N. , 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81 , 23412358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M., and Ellingson R. G. , 2000: A study of diurnal cycle of OLR using GOES sounder data. IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev, Eds., A. Deepak, 505–508.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , and Davies R. W. , 1989: Line shape and the water vapor continuum. Atmos. Res., 23 , 229241.

  • Darnell, W. L., Gupta S. K. , and Staylor W. F. , 1983: Downward longwave radiation at the surface from satellite measurements. J. Appl. Meteor., 22 , 19561960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., . 1986: Downward longwave surface radiation from sun-synchronous satellite data: Validation of methodology. J. Climate Appl. Meteor., 25 , 10121021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dedieu, G., Deschamps P. Y. , and Kerr Y. H. , 1987: Satellite estimation of solar irradiance at the surface of the earth and the surface albedo using a physical model applied to METEOSAT data. J. Climate Appl. Meteor., 26 , 7987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., 1982: On the effects of cumulus dimensions on longwave irradiance and heating rate calculations. J. Atmos. Sci., 39 , 886896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., . 1995: Surface longwave fluxes from satellite observations: A critical review. Remote Sens. Environ., 51 , 8997.

  • Ellingson, R. G., and Gille J. C. , 1978: An infrared radiative transfer model. Part I: Model description and comparison of observations with calculations. J. Atmos. Sci., 35 , 523545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and Ferraro R. R. , 1983: An examination of a technique for estimating the longwave radiation budget from satellite radiance observations. J. Climate Appl. Meteor., 22 , 14161423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and Serafino G. N. , 1984: Observations and calculations of aerosol heating over the Arabian Sea during MONEX. J. Atmos. Sci., 41 , 575589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., Yanuk D. J. , Lee H-T. , and Gruber A. , 1989: A technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic. Technol., 6 , 706711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., Ellis J. , and Fels S. , 1991: The intercomparison of radiation codes in climate models (ICRCCM): Longwave results. J. Geophys. Res., 96 , 89298953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., Lee H-T. , Yanuk D. , and Gruber A. , 1994: Validation of a technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic. Technol., 11 , 357365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frouin, R., and Gautier C. , 1988: Downward longwave irradiance at the ocean surface from satellite data: Methodology and in situ validation. J. Geophys. Res., 93 , 597619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, I., Harrison D. E. , and Lacis A. , 1984: On the variability of the net longwave radiation at the ocean surface. Rev. Geophys., 22 , 177193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gautier, C., Diak G. , and Masso S. , 1980: Simple physical model to estimate incident solar radiation from GOES satellite data. J. Appl. Meteor., 19 , 10051012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., 1989: A parameterization of longwave radiation from sun-synchronous satellite data. J. Climate, 2 , 305320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Darnell W. L. , and Wilber A. C. , 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor., 31 , 13611367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Wilber A. C. , Darnell W. L. , and Suttles J. T. , 1993: Longwave surface radiation over the glove from satellite data: An error analysis. Int. J. Remote Sens., 14 , 95114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., Ritchey N. A. , Wilber A. C. , Whitlock C. H. , Gibson G. G. , and Stackhouse P. W. Jr.,, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12 , 26912710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., DeLuisi J. J. , and Matt D. , 1996: The NOAA Integrated Surface Irradiance Study (ISIS): A new surface radiation monitoring network. Bull. Amer. Meteor. Soc., 77 , 28572864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IMSL, 1989: User's Manual. IMSL Library, FORTRAN Subroutines for Statistical Analysis,. IMSL, Houston, TX, 1579 pp.

  • Lee, H-T., 1993: Development of a statistical technique for estimating the downward longwave radiation at the surface from satellite observations. Ph.D. dissertation, University of Maryland, College Park, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Malkmus, R., 1967: Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. J. Opt. Soc. Amer., 57 , 323329.

  • McClatchey, R. A., Fenn R. W. , Selby J. E. A. , Volz F. E. , and Garing J. S. , 1972: Optical Properties of the Atmosphere. 3d. ed. Air Force Cambridge Research Laboratories, Environmental Research Papers, ARCRL-72-0497, 108 pp.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., 1978: An improved technique for obtaining clear radiance from cloud contaminated radiances. Mon. Wea. Rev., 106 , 15901597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., and Dean C. , 1982: Evaluation of a new technique for producing clear radiances. J. Appl. Meteor., 21 , 10051014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meerkoetter, R., and Grassl H. , 1984: Longwave net flux at the ground from radiances at the top. IRS'84: Current Problems in Atmospheric Radiation, G. Fiocco, Ed., A. Deepak, 220–223.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., and Deschamps P. Y. , 1986: Downward longwave radiation at the surface in clear sky atmospheres: Comparison of measured, satellite-derived and calculated fluxes. Proc. ISLSCP Conf., Rome, Italy, ESA SP-248, 257–261.

    • Search Google Scholar
    • Export Citation
  • NOAA, 1995: Polar orbiter data user's guide. Satellite Service Data Division, NCDC, NESDIS.

  • Ohmura, A., and Coauthors. 1998: Baseline Surface Radiation Network (BSRN/WRMC), a new precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N., Susskind J. , and McMillin L. , 1988: Results of a joint NOAA/NASA sounder simulation study. J. Atmos. Oceanic Tech., 5 , 4456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Corio L. A. , 1984: Surface radiation budget from satellite. Mon. Wea. Rev., 112 , 209215.

  • Schmetz, J., 1989: Towards a surface radiation climatology: Retrieval of downward irradiances from satellites. Atmos. Res., 23 , 287321.

  • Schmetz, P., Schmetz J. , and Raschke E. , 1986: Estimation of daytime downward longwave radiation at the surface from satellite and grid point data. Theor. Appl. Climatol., 37 , 136149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and Woolf H. M. , 1976: The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations. J. Atmos. Sci., 33 , 11271140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L., . 1983: Geostationary satellite sounder (VAS) observations of longwave radiation flux. Paper presented at the Satellite Systems to Measure Radiation Budget Parameters and Climate Change Signals, Iglis, Austria, International Radiation Commission.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarpley, J. D., 1979: Estimating incident solar radiation at the surface from geostationary satellite data. J. Appl. Meteor., 18 , 11721181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. X., and Ellingson R. G. , 2000: A new narrowband radiation model for water vapor absorption. J. Atmos. Sci., 57 , 14811496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WCRP-5, 1988: Concept of the Global Energy and Water Cycle Experiment. Report of the JSC study group, WMO/TD-N215, 63 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 313 50 4
PDF Downloads 158 39 2