The Oceanic Remote Chemical/Optical Analyzer (ORCA)—An Autonomous Moored Profiler

John P. Dunne School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by John P. Dunne in
Current site
Google Scholar
PubMed
Close
,
Allan H. Devol School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Allan H. Devol in
Current site
Google Scholar
PubMed
Close
, and
Steven Emerson School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Steven Emerson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An autonomous, moored profiler [the Oceanic Remote Chemical/Optical Analyzer (ORCA)] was developed to sense a variety of chemical and optical properties in the upper water column. It is presently used to monitor water quality parameters in South Puget Sound—a largely undeveloped area subject to extensive future urbanization. ORCA has three main components: 1) a three-point moored Autonomous Temperature Line Acquisition System (ATLAS) toroidal float; 2) a profiling assembly on the float with computer, winch, cellular system, meteorological sensors (wind, temperature, humidity, irradiance), solar panels, and batteries; and 3) an underwater sensor package consisting of a Seabird CTD profiler, YSI dissolved oxygen electrode, Wetlabs transmissometer, and Wetlabs chlorophyll fluorometer. At regular sampling intervals, ORCA profiles the water column using the winch and pressure information from the CTD. The data are recorded on the computer and transmitted to the lab automatically via cellular communications. Data are presented from a 1-day deployment in May 2000 and from a long-term, 7-month deployment. The dataset reveals the combination of intermittent stratification mixing and strong seasonal forcing in this estuarine system.

Current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Corresponding author address: Dr. John P. Dunne, Postdoctoral Research Associate, Princeton University, AOS Program, PO Box CN710, Sayre Hall, Princeton, NJ 08544-0710. Email: jdunne@princeton.edu

Abstract

An autonomous, moored profiler [the Oceanic Remote Chemical/Optical Analyzer (ORCA)] was developed to sense a variety of chemical and optical properties in the upper water column. It is presently used to monitor water quality parameters in South Puget Sound—a largely undeveloped area subject to extensive future urbanization. ORCA has three main components: 1) a three-point moored Autonomous Temperature Line Acquisition System (ATLAS) toroidal float; 2) a profiling assembly on the float with computer, winch, cellular system, meteorological sensors (wind, temperature, humidity, irradiance), solar panels, and batteries; and 3) an underwater sensor package consisting of a Seabird CTD profiler, YSI dissolved oxygen electrode, Wetlabs transmissometer, and Wetlabs chlorophyll fluorometer. At regular sampling intervals, ORCA profiles the water column using the winch and pressure information from the CTD. The data are recorded on the computer and transmitted to the lab automatically via cellular communications. Data are presented from a 1-day deployment in May 2000 and from a long-term, 7-month deployment. The dataset reveals the combination of intermittent stratification mixing and strong seasonal forcing in this estuarine system.

Current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Corresponding author address: Dr. John P. Dunne, Postdoctoral Research Associate, Princeton University, AOS Program, PO Box CN710, Sayre Hall, Princeton, NJ 08544-0710. Email: jdunne@princeton.edu

Save
  • Abbott, M. R., Brink K. H. , Booth C. R. , Blasco D. , Codispodi L. A. , Niiler P. P. , and Ramp S. R. , 1990: Observations of phytoplankton and nutrients from a Lagrangian drifter off northern California. J. Geophys. Res., 95C , 93939409.

    • Search Google Scholar
    • Export Citation
  • Bricaud, A., Roesler C. , and Zaneveld J. R. V. , 1995: In situ methods for measuring the inherent optical properties of ocean waters. Limnol. Oceanogr., 40 , 393410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., Strutton P. G. , Friedrich G. E. , Feely R. A. , Feldman G. C. , Foley D. G. , and McPhaden M. L. , 1999: Biological and chemical response of the equatorial Pacific Ocean to the 1997–98 El Niño. Science, 286 , 21262131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coale, K. H., Chin C. S. , Massoth G. J. , Johnson K. S. , and Baker E. T. , 1991: In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature, 352 , 325328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T., 1988: Recent advances and future directions in multi-disciplinary in situ oceanographic measurement systems. Toward a Theory on Biological–Physical Interactions in the World Ocean, B. J. Rothschild, Ed., Kluwer Academic, 555–598.

    • Search Google Scholar
    • Export Citation
  • Dickey, T., Douglass R. H. , Manov D. , Bogucki D. , Walker P. C. , and Petrelis P. , 1993: An experiment in duplex communication with a multi-variable moored system in coastal waters. J. Atmos. Oceanic Technol., 10 , 637644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T., and Coauthors. 1998: Initial results from the Bermuda Testbed Mooring program. Deep-Sea Res., 45B , 771794.

  • Doherty, K. W., Frye D. E. , Liberatore S. P. , and Toole J. M. , 1999: A moored profiling instrument. J. Atmos. Oceanic Technol., 16 , 18161829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Echert, D. C., Morison J. H. , White G. B. , and Geller E. W. , 1989: The autonomous ocean profiler: A current-driven oceanographic sensor platform. J. Oceanic Eng., 14 , 195202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, D. G., and Coauthors. 1997: Longwaves and primary productivity variations in the equatorial Pacific at 0 degree, 140 degree W. Deep-Sea Res., 44B , 18011826.

    • Search Google Scholar
    • Export Citation
  • Forrester, N. C., Stokey R. P. , von Alt C. , Allen B. G. , Goldsborough R. G. , Purcell M. J. , and Austin T. C. , 1997: The LEO-15 Long-term Ecosystem Observatory: Design and installation. Proc. Oceans '97, Halifax, NS, Canada, MTS/IEEE, Vol. 2, 1082–1088.

    • Search Google Scholar
    • Export Citation
  • Hamilton, J., Fowler G. , and Beanlands B. , 1999: Long-term monitoring with a moored wave-powered profiler. Sea Technol., 40 , 6869.

  • Hanson, A. K., and Donaghay P. L. , 1998: Micro- to fine-scale chemical gradients and layers in stratified coastal waters. Oceanogr., 11 , 1017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K. S., Sakamoto-Arnold C. M. , and Beehler C. L. , 1989: Continuous determination of nitrate concentrations insitu. Deep-Sea Res., 36 , 14071413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeil, J. D., Jannasch H. W. , Dickey T. , McGillicuddy D. , Brzezinski M. , and Sakamoto C. M. , 1999: New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. J. Geophys. Res., 104C , 1553715548.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA–TAO and the 1991–93 El Niño–Southern Oscillation event. Oceanogr., 6 , 3644.

  • Provost, C., and du Chaffaut M. , 1996: Yoyo profiler: An autonomous multisensor. Sea Technol., 27, 10 , 3945.

  • von Alt, C., De Luca M. P. , Glen S. M. , Grassle J. F. , and Haldvogel D. B. , 1997: LEO-15: Monitoring and managing coastal resources. Sea Technol., 38 , 1016.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 299 83 7
PDF Downloads 171 93 6