Theoretical Simulation and Experimental Characterization of an Expansion-Type Kelvin Spectrometer with Intrinsic Calibration

W. Holländer Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany

Search for other papers by W. Holländer in
Current site
Google Scholar
PubMed
Close
,
W. Dunkhorst Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany

Search for other papers by W. Dunkhorst in
Current site
Google Scholar
PubMed
Close
,
H. Lödding Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany

Search for other papers by H. Lödding in
Current site
Google Scholar
PubMed
Close
, and
H. Windt Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany

Search for other papers by H. Windt in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

An expansion-type Kelvin spectrometer has been designed and its performance has been shown to agree with the theoretical simulation within experimental uncertainty. In the intrinsically calibrated mode, number concentration as well as supersaturation can be determined from first principles and experimentally verified. In this mode, the number concentration uncertainty is about ±15%, and the supersaturation uncertainty is about ±20%. The concentration detection limit in this mode depends on the supersaturation and is limited by heat conduction from the walls. In the Mie scattering mode, the detection limit is about 30 cm–3. It is capable of operating in a wide range of supersaturations using a variety of liquids.

Corresponding author address: Dr. W. Holländer, Fraunhofer Institute of Toxicology and Aerosol Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany. Email: hollaender@ita.fhg.de

Abstract

An expansion-type Kelvin spectrometer has been designed and its performance has been shown to agree with the theoretical simulation within experimental uncertainty. In the intrinsically calibrated mode, number concentration as well as supersaturation can be determined from first principles and experimentally verified. In this mode, the number concentration uncertainty is about ±15%, and the supersaturation uncertainty is about ±20%. The concentration detection limit in this mode depends on the supersaturation and is limited by heat conduction from the walls. In the Mie scattering mode, the detection limit is about 30 cm–3. It is capable of operating in a wide range of supersaturations using a variety of liquids.

Corresponding author address: Dr. W. Holländer, Fraunhofer Institute of Toxicology and Aerosol Research, Nikolai-Fuchs-Str. 1, D-30625 Hannover, Germany. Email: hollaender@ita.fhg.de

Save
  • Carslaw, H. S., and Jaeger J. C. , 1980: Conduction of Heat in Solids. Clarendon, 510 pp.

  • Chuang, P. Y., Nenes A. , Smith J. N. , Flagan R. C. , and Seinfeld J. H. , 2000: Design of a CCN instrument for airborne measurement. J. Atmos. Oceanic Technol., 17 , 10051019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D., Deshler T. , Vali G. , and Weschler P. , 1998: A balloon-borne cloud condensation nuclei counter. J. Geophys. Res., 103 , 89278934.

  • Filipovicova, D., Reischl G. P. , Rudolf R. , Szymanski W. W. , Vrtala A. , and Wagner P. E. , 1995: Effect of multiple light scattering on optical concentration measurement in aerosols. J. Aerosol Sci., 26 , S. 23S24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, N., 1989: The Mechanics of Aerosols. Dover, 408 pp.

  • Hinds, W. C., 1982: Aerosol Technology. Wiley, 424 pp.

  • Holländer, W., 1995: Sampling of airborne particulate matter. Airborne Particulate Matter, T. Kouimtzis and C. Samara, Eds., Vol. 4, Handbook of Environmental Chemistry, Springer-Verlag, 143–173.

    • Search Google Scholar
    • Export Citation
  • Holländer, W., and Schumann G. , 1979: Growth of polydisperse aerosol in an adiabatic condensation nucleus counter with finite expansion time. J. Colloid Interface Sci., 70 , 475482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holländer, W., and Levsen K. , 2002: Physikalische und chemische charakterisierung des interstitiellen aerosols (CHARIA). BMBF Final Report, 60 pp.

  • Holländer, W., Dunkhorst W. , and Windt H. , 2000: Characterization of aerosol particles by their heterogeneous nucleation: Activity at low supersaturations with respect to water and various organic vapors. Proc. 15th Int. Conf. on Nucleation and Atmospheric Aerosols, Rolla, MO, AIP, 732–735.

    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., and Wojciechowski T. A. , 1981: Description and discussion of the NRL TGDCC. J. Rech. Atmos., 15 , 209213.

  • Houghton, J. T., Meira Filho L. G. , Callander B. A. , Harris N. , Kattenberg A. , and Maskell K. , and Eds., 1996: Climate Change 1995: The Science of Climate Change. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1989: An instantaneous CCN spectrometer. J. Atmos. Oceanic Technol., 6 , 10551065.

  • Hudson, J. G., 1993: Cloud condensation nuclei. J. Appl. Meteor., 32 , 596607.

  • Kyle, T. G., 1979: Determining particle concentration by statistics. J. Aerosol Sci., 10 , 8793.

  • Leiterer, U., Dier H. , and Naebert T. , 1997: Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala. Beitr. Phys. Atmos., 70 , 319336.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1971: The Physics of Clouds. Clarendon, 671 pp.

  • McMurry, P. H., 2000: The history of condensation nucleus counters. Aerosol Sci. Technol., 33 , 297322.

  • Natanson, G., 1964: The Mechanics of Aerosols. Dover, 408 pp.

  • Richarz, F., 1906: Der Wert des Verhältnisses der beiden spezifischen Wärmen für ein Gemisch zweier Gase, insbesondere für ozonhaltigen Sauerstoff. Ann. Phys., 19 , 639643.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Seinfeld, J. H., and Pandis S. N. , 1998: Atmospheric Chemistry and Physics. Wiley, 1326 pp.

  • Szymanski, W. W., and Wagner P. E. , 1983: Aerosol size distribution during a condensation growth process: Measurement and comparison with theory. Atmos. Environ., 17 , 22712276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part I: The chemical diffusion method and its application to atmospheric nuclei. Geofis. Pure Appl., 43 , 227242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1963: Measurements of natural cloud nuclei. J. Rech. Atmos., 1 , 101105.

  • Twomey, S., 1977: Atmospheric Aerosols. Elsevier, 302 pp.

  • Wagner, P. E., 1982: Aerosol growth by condensation. Aerosol Microphysics, W. H. Marlow, Ed., Vol. 16, Topics in Current Physics, Springer-Verlag, 129–178.

    • Search Google Scholar
    • Export Citation
  • Wagner, P. E., 1985: A Constant-Angle Mie Scattering Method (CAMS) for investigation of particle formation processes. J. Colloid Interface Sci., 105 , 456464.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 142 48
PDF Downloads 53 15 0