Satellite and Skin-Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites

Gary A. Wick NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Gary A. Wick in
Current site
Google Scholar
PubMed
Close
,
John J. Bates NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by John J. Bates in
Current site
Google Scholar
PubMed
Close
, and
Donna J. Scott CIRES/ETL, University of Colorado, Boulder, Colorado

Search for other papers by Donna J. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in the ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and the estimation and interpretion of the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES imagers on the GOES-8–10 satellites are shown to have very small bias (<0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known “satellite midnight” calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

Corresponding author address: Gary A. Wick, NOAA/Environmental Technology Laboratory, 325 Broadway, R/ET1, Boulder, CO 80305. Email: Gary.A.Wick@noaa.gov

Abstract

The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in the ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and the estimation and interpretion of the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES imagers on the GOES-8–10 satellites are shown to have very small bias (<0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known “satellite midnight” calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

Corresponding author address: Gary A. Wick, NOAA/Environmental Technology Laboratory, 325 Broadway, R/ET1, Boulder, CO 80305. Email: Gary.A.Wick@noaa.gov

Save
  • Anding, D., and Kauth R. , 1970: Estimation of sea surface temperature from space. Remote Sens. Environ., 1 , 217220.

  • Barton, I. J., 1995: Satellite-derived sea surface temperatures: Current status. J. Geophys. Res., 100 , 87778790.

  • Bates, J. J., and Smith W. L. , 1985: Sea surface temperature: Observations from geostationary satellites. J. Geophys. Res., 90 , 1160911618.

  • Baucom, J. G., and Weinreb M. , 1996: Characteristics of E/W stripes in infrared images from the GOES-8 imager. GOES-8 and Beyond, SPIE Proc., E. R. Washwell, Ed., Vol. 2812, The International Society for Optical Engineering, 587–595.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and Salby M. L. , 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9 , 28022820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, S. J., Harris A. R. , Mason I. M. , and Zavody A. M. , 1997: New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer. J. Geophys. Res., 102 , 2797327989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and Curry J. A. , 1996: Determination of surface turbulent fluxes for the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment: Comparison of satellite retrievals and in situ measurements. J. Geophys. Res., 101 , 2851528528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., Clayson C. A. , Rossow W. B. , Reeder R. , Zhang Y-C. , Webster P. J. , Liu G. , and Sheu R-S. , 1999: High-resolution satellite-derived dataset of the surface fluxes of heat, freshwater, and momentum for the TOGA COARE IOP. Bull. Amer. Meteor. Soc., 80 , 20592080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., and Phulpin T. , 1980: Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11, and 12 μm. Bound.-Layer Meteor., 18 , 131143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Nightingale T. J. , Sheasby T. , Turner J. , Robinson I. S. , and Emery W. J. , 1999: Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophys. Res. Lett., 26 , 25052508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., Achutuni R. V. , Daniels J. M. , Prins E. M. , and Nelson J. P. III,, 1998: An assessment of GOES-8 imager data quality. Bull. Amer. Meteor. Soc., 79 , 25092526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Yu Y. , Wick G. A. , Schlüssel P. , and Reynolds R. W. , 1994: Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99 , 52195236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., Baldwin D. J. , Schlüssel P. , and Reynolds R. W. , 2001: Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements. J. Geophys. Res.,106, 2387–2405.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Godfrey J. S. , Wick G. A. , Edson J. B. , and Young G. S. , 1996: Cool skin and warm layer effects on sea surface temperature. J. Geophys. Res., 101 , 12951308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. X., and Weinreb M. , 1996: GOES-8 imager midnight effects and slope correction. GOES-8 and Beyond, SPIE Proc., E. R. Washwell, Ed., Vol. 2812, The International Society for Optical Engineering, 596–607.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors. 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kantha, L. H., and Clayson C. A. , 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99 , 2323525266.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., 1980: The aqueous thermal boundary layer. Bound.-Layer Meteor., 18 , 107127.

  • Komajda, R. J., and McKenzie K. , 1994: An introduction to the GOES I-M imager and sounder instruments and the GVAR retransmission format. NOAA Tech. Rep. NESDIS 82, NOAA/NESDIS, Washington, DC, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., and Zhu T. , 1997: Sea surface temperatures from the GOES-8 geostationary satellite. Bull. Amer. Meteor. Soc., 78 , 19711983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maul, G. A., 1981: Application of GOES visible-infrared data to quantifying mesoscale ocean surface temperatures. J. Geophys. Res., 86 , 80078021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, D. A., and Osterman W. O. , 1998: Satellite-derived sea surface temperatures: Evaluation of GOES-8 and GOES-9 multispectral imager retrieval accuracy. J. Atmos. Oceanic Technol., 15 , 788797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, D. A., Parmeter M. M. , Olszewski D. S. , and McKenzie B. D. , 1998: Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bull. Amer. Meteor. Soc., 79 , 397407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., Pichel W. , and Walton C. , 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90 , 1158711601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillin, L., and Crosby D. , 1984: Theory and validation of the multiple window sea surface temperature technique. J. Geophys. Res., 89 , 36553661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Purdom J. F. W. , 1994: Introducing GOES-1: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75 , 757781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Harris A. R. , 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature 2. Comparison with in situ measurements. J. Geophys. Res., 104 , 2357923590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mutlow, C. T., Závody A. M. , Barton I. J. , and Llewellyn-Jones D. T. , 1994: Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results. J. Geophys. Res., 99 , 2257522588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., Barnett T. P. , Laurs R. M. , and Vastano A. C. , 1985: Advances in satellite sea surface temperature measurement and oceanographic applications. J. Geophys. Res., 90 , 1157311586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olesen, F-S., and Grassl H. , 1985: Cloud detection and classification over oceans at night with NOAA-7. Int. J. Remote Sens., 6 , 14351444.

  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29 , 959970.

  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, I. A., Wells N. C. , and Charnock H. , 1984: The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers. Int. J. Remote Sens., 5 , 1945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and Kriebel K. T. , 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9 , 123150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., Emery W. J. , Grassl H. , and Mammen T. , 1990: On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res., 95 , 1334113356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E., Vazquez J. , Tran A. , and Sumagaysay R. , 1996: Satellite-derived sea surface temperature data. NOAA/NASA Pathfinder program. [Available online at http://www.agu.org/eos_elec/95274e.html.].

    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., and Schlüssel P. , 1996: Evolution of cool skin and direct air–sea gas transfer coefficient during daytime. Bound.-Layer Meteor., 77 , 4568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. S., and Cornillon P. , 1999: Satellite-derived sea surface temperature fronts on the continental shelf off the northeast U.S. coast. J. Geophys. Res., 104 , 2345923478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, C. C., Pichel W. G. , Sapper J. F. , and May D. A. , 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res., 103 , 2799928012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., Clayson C. A. , and Curry J. A. , 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9 , 17121730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinreb, M., 1996: Real-world calibration of GOES-8 and -9 sensors. GOES-8 and Beyond, SPIE Proc., E. R. Washwell, Ed., Vol. 2812, The International Society for Optical Engineering, 572–586.

    • Search Google Scholar
    • Export Citation
  • Weinreb, M., Jamison M. , Fulton N. , Chen Y. , Johnson J. X. , Bremer J. , Smith C. , and Baucom J. , 1997: Operational calibration of the imagers and sounders on the GOES-8 and -9 satellites. Appl. Opt., 36 , 68956904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., 1995: Evaluation of the variability and predictability of the bulk-skin sea surface temperature difference with application to satellite-measured sea surface temperature. Ph.D. thesis, University of Colorado, Boulder, CO, 139 pp.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., Emery W. J. , Kantha L. H. , and Schlüssel P. , 1996: The behavior of the bulk-skin temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr., 26 , 19691988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., Menzel W. P. , and Wade G. S. , 1999: Estimation of sea surface temperatures using GOES-8/9 radiance measurements. Bull. Amer. Meteor. Soc., 80 , 11271138.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 620 231 74
PDF Downloads 251 50 7