Detection of Boundary Layer Water Clouds by Spaceborne Cloud Radar

R. Baedi IRCTR, Delft University of Technology, Delft, Netherlands

Search for other papers by R. Baedi in
Current site
Google Scholar
PubMed
Close
,
R. Boers CSIRO Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by R. Boers in
Current site
Google Scholar
PubMed
Close
, and
H. Russchenberg IRCTR, Delft University of Technology, Delft, Netherlands

Search for other papers by H. Russchenberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A model for the radar reflectivity of boundary layer water clouds is constructed using cloud droplet spectra fitted to a truncated gamma distribution. The spectra were derived from several recent field experiments. Realistic space-based radar returns are simulated that take into account the pulse shape, digitization interval, averaging volume, and variations in droplet concentration, cloud depth, and cloud-top height. The results show that the long pulse length of the proposed radar is responsible for smearing out the real reflectivity spatially so that the space-based detected clouds occupy a volume far exceeding that of the “observed” cloud. However, the effect of smearing is reduced by the limited receiver sensitivity. Cloud volume of boundary layer clouds is overestimated by between 30% and 100% using proposed radar parameters. Even if clouds are detected, the radar reflectivity convoluted by the pulse shape is sufficiently different from the originally observed reflectivity to seriously impede the retrieval of accurate cloud liquid water content.

Corresponding author address: Reinout Boers, KNMI, P.O. Box 301, 3730AE De Bilt, Netherlands. Email: boers@knmi.nl

Abstract

A model for the radar reflectivity of boundary layer water clouds is constructed using cloud droplet spectra fitted to a truncated gamma distribution. The spectra were derived from several recent field experiments. Realistic space-based radar returns are simulated that take into account the pulse shape, digitization interval, averaging volume, and variations in droplet concentration, cloud depth, and cloud-top height. The results show that the long pulse length of the proposed radar is responsible for smearing out the real reflectivity spatially so that the space-based detected clouds occupy a volume far exceeding that of the “observed” cloud. However, the effect of smearing is reduced by the limited receiver sensitivity. Cloud volume of boundary layer clouds is overestimated by between 30% and 100% using proposed radar parameters. Even if clouds are detected, the radar reflectivity convoluted by the pulse shape is sufficiently different from the originally observed reflectivity to seriously impede the retrieval of accurate cloud liquid water content.

Corresponding author address: Reinout Boers, KNMI, P.O. Box 301, 3730AE De Bilt, Netherlands. Email: boers@knmi.nl

Save
  • Baedi, R. J. P., de Wit J. J. M. , Russchenberg H. W. J. , Erkelens J. S. , and Baptista J. P. V. P. , 2000: Estimating effective radius and liquid water content from radar and lidar based on the CLARE98 data set. Phys. Chem. Earth B, 25 , 10571062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1982: Cloud thermodynamic models in saturation point coordinates. J. Atmos. Sci., 39 , 21822191.

  • Boers, R., 1995: Influence of seasonal variation in cloud condensation nuclei, drizzle, and solar radiation, on marine stratocumulus cloud optical depth. Tellus, 47B , 578586.

    • Search Google Scholar
    • Export Citation
  • Boers, R., and Mitchell R. M. , 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo. Tellus, 46A , 229241.

    • Search Google Scholar
    • Export Citation
  • Boers, R., Jensen J. B. , Krummel P. B. , and Gerber H. , 1996: Microphysical and radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122 , 13071339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., Jensen J. B. , and Krummel P. B. , 1998: Microphysical and radiative structure of marine stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124 , 151168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., Russchenberg H. , Erkelens J. , Venema V. , van Lammeren A. , Apituley A. , and Jongen S. , 2000: Ground-based remote sensing of stratocumulus properties during CLARA, 1996. J. Appl. Meteor., 39 , 169181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., Ridgway W. , Wiscombe W. J. , Bell T. L. , and Snider J. B. , 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Miller M. A. , Albrecht B. A. , Ackermann T. P. , Verlinde J. , Babb D. M. , Peters R. M. , and Syrett W. J. , 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12 , 201229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, A., Marshak A. , Wiscombe W. J. , and Cahalan R. F. , 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53 , 15381558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESA, 1999: Int. Workshop Proc.: CLARE98 Cloud Lidar and Radar Experiment. Noordwijk, Netherlands, ESTEC, WPP-170, 239 pp.

  • Fox, N., and Illingworth A. , 1997a: The potential of a spaceborne cloud radar for the detection of stratocumulus clouds. J. Appl. Meteor., 36 , 676687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, N., and Illingworth A. , 1997b: The retrieval of stratocumulus cloud properties by ground-based radar. J. Appl. Meteor., 36 , 485492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., Fairall C. W. , and Snider J. B. , 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Han, Q., Rossow W. B. , and Lacis A. A. , 1994: Near-global survey of the effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., and Rossow W. B. , 1994: Observations of cloud liquid water path over the ocean: Optical and microwave sensing methods. J. Geophys. Res., 99 , 2090720927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., Davis A. , Wiscombe W. J. , and Cahalan R. F. , 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54 , 14231444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., and Baker M. B. , 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372 , 250252.

  • Rossow, W. B., and Schiffer R. A. , 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., and Garder L. C. , 1993: Validation of ISCCP cloud detection. J. Climate, 6 , 23702393.

  • WMO–WCPR, 1994: Utility and feasibility of a cloud profiling radar. Report of the GEWEX Topical Workshop. WMO Tech. Doc. 593, Pasedena, CA, 46 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 512 325 23
PDF Downloads 121 38 2