A Two-Parameter Wind Speed Algorithm for Ku-Band Altimeters

J. Gourrion IFREMER, Département d'Océanographie Spatiale, Plouzane, France

Search for other papers by J. Gourrion in
Current site
Google Scholar
PubMed
Close
,
D. Vandemark NASA Goddard Space Flight Center, Wallops Island, Virginia

Search for other papers by D. Vandemark in
Current site
Google Scholar
PubMed
Close
,
S. Bailey NASA Goddard Space Flight Center, Wallops Island, Virginia

Search for other papers by S. Bailey in
Current site
Google Scholar
PubMed
Close
,
B. Chapron IFREMER, Département d'Océanographie Spatiale, Plouzane, France

Search for other papers by B. Chapron in
Current site
Google Scholar
PubMed
Close
,
G. P. Gommenginger The James Rennell Division, Southampton Oceanography Centre, Southampton, United Kingdom

Search for other papers by G. P. Gommenginger in
Current site
Google Scholar
PubMed
Close
,
P. G. Challenor The James Rennell Division, Southampton Oceanography Centre, Southampton, United Kingdom

Search for other papers by P. G. Challenor in
Current site
Google Scholar
PubMed
Close
, and
M. A. Srokosz The James Rennell Division, Southampton Oceanography Centre, Southampton, United Kingdom

Search for other papers by M. A. Srokosz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Globally distributed crossovers of altimeter and scatterometer observations clearly demonstrate that ocean altimeter backscatter correlates with both the near-surface wind speed and the sea state. Satellite data from TOPEX/Poseidon and NSCAT are used to develop an empirical altimeter wind speed model that attenuates the sea-state signature and improves upon the present operational altimeter wind model. The inversion is defined using a multilayer perceptron neural network with altimeter-derived backscatter and significant wave height as inputs. Comparisons between this new model and past single input routines indicates that the rms wind error is reduced by 10%–15% in tandem with the lowering of wind error residuals dependent on the sea state. Both model intercomparison and validation of the new routine are detailed, including the use of large independent data compilations that include the SeaWinds and ERS scatterometers, ECMWF wind fields, and buoy measurements. The model provides consistent improvement against these varied sources with a wind-independent bias below 0.3 m s−1. The continuous form of the defined function, along with the global data used in its derivation, suggest an algorithm suitable for operational application to Ku-band altimeters. Further model improvement through wave height inclusion is limited due to an inherent multivaluedness between any single realization of the altimeter measurement pair [σo, HS] and observed near-surface winds. This ambiguity indicates that HS is a limited proxy for variable gravity wave properties that impact upon altimeter backscatter.

Corresponding author address: Mr. Douglas C. Vandemark, NASA GSFC, Bldg. N-159, Room E222, Wallops Island, VA 23337. Email: vandemark@gsfc.nasa.gov

Abstract

Globally distributed crossovers of altimeter and scatterometer observations clearly demonstrate that ocean altimeter backscatter correlates with both the near-surface wind speed and the sea state. Satellite data from TOPEX/Poseidon and NSCAT are used to develop an empirical altimeter wind speed model that attenuates the sea-state signature and improves upon the present operational altimeter wind model. The inversion is defined using a multilayer perceptron neural network with altimeter-derived backscatter and significant wave height as inputs. Comparisons between this new model and past single input routines indicates that the rms wind error is reduced by 10%–15% in tandem with the lowering of wind error residuals dependent on the sea state. Both model intercomparison and validation of the new routine are detailed, including the use of large independent data compilations that include the SeaWinds and ERS scatterometers, ECMWF wind fields, and buoy measurements. The model provides consistent improvement against these varied sources with a wind-independent bias below 0.3 m s−1. The continuous form of the defined function, along with the global data used in its derivation, suggest an algorithm suitable for operational application to Ku-band altimeters. Further model improvement through wave height inclusion is limited due to an inherent multivaluedness between any single realization of the altimeter measurement pair [σo, HS] and observed near-surface winds. This ambiguity indicates that HS is a limited proxy for variable gravity wave properties that impact upon altimeter backscatter.

Corresponding author address: Mr. Douglas C. Vandemark, NASA GSFC, Bldg. N-159, Room E222, Wallops Island, VA 23337. Email: vandemark@gsfc.nasa.gov

Save
  • Benada, R., 1997: Merged GDR (TOPEX/Poseidon) generation B: User's handbook. D-11007, Jet Propulsion Laboratory, PO-DAAC, 172 pp.

  • Brown, G., Stanley H. , and Roy N. , 1981: The wind speed measurement capability of spaceborne radar altimeters. IEEE J. Oceanic Eng., 6 , 5963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callahan, P. S., Morris C. S. , and Hsiao S. V. , 1994: Comparison of Topex/Poseiden σ° and scientific wave height distributions to Geosat. J. Geophys. Res., 99 , (C12). 2501525025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CERSAT, 1996: Off-line wind scatterometer ERS products. User's handbook, IFREMER, C2-MUT-W-01-IF, 86 pp.

  • CERSAT, 1997: Collocated NSCAT/ERS products. User's handbook, IFREMER, NSCAT-MUT-S-01-IF, 20 pp.

  • Chapron, B., Vandemark D. , Elfouhaily T. , Thompson D. , Gaspar P. , and Labroue S. , 2001: Altimeter sea state bias: A new look at global range error estimates. Geophys. Res. Lett., 28 , 39473950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., and McCabe P. , 1985: A review of satellite altimeter measurement of surface wind speed: With a proposed new algorithm. J. Geophys. Res., 90 , 47074720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., Ries J. C. , Haines B. J. , Fu L-L. , and Callahan P. S. , 2001: Satellite altimetry. Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave, Eds.,. Academic Press, 1–131.

    • Search Google Scholar
    • Export Citation
  • Dobson, E., Monaldo F. , Goldhirsh J. , and Wilkerson J. , 1987: Validation of Geosat altimeter derived wind speeds and significant wave heights using buoy data. J. Geophys. Res., 92 , 1071910731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobson, F., 1991: Review of reference height and averaging time of surface wind measurements at sea. Rep. 3, Marine Meteorology and Related oceanographic Activities, WMO, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Donnelly, W. J., Carswell J. R. , McIntosh R. E. , Chang P. S. , Wilkerson J. , Marks F. , and Black P. G. , 1999: Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res., 104 , (C5). 1148511497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, R. S., 1997: NASA scatterometer, high-resolution merged geophysical data product: User's guide. Ver 1.1, Jet Propulsion Laboratory, PO-DAAC, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Freilich, M., and Dunbar R. , 1993: Derivation of satellite wind model functions using operational surface wind analyses: An altimeter example. J. Geophys. Res., 98 , 1463314649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M., and Challenor P. , 1994: A new approach for determining fully empirical altimeter wind speed model functions. J. Geophys. Res., 99 , 2505125062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M., and Dunbar R. , 1999: The accuracy of the NSCAT-1 vector winds: Comparisons with NDBC buoys. J. Geophys. Res., 104 , 1123111246.

  • Glazman, R., and Pilorz S. , 1990: Effects of sea maturity on satellite altimeter measurements of surface wind. J. Geophys. Res., 95 , 28572870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazman, R., and Greysukh A. , 1993: Satellite altimeter measurements of surface wind. J. Geophys. Res., 98 , 24752483.

  • Gommenginger, C., Srokosz M. , Challenor P. , and Cotton P. , 2002: Development and validation of altimeter wind speed algorithms using an extended collocated buoy/TOPEX dataset. IEEE Trans. Geosci. Remote Sens., 40 , 251260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourrion, J., Vandemark D. , Bailey S. , and Chapron B. , 2000: Satellite altimeter models for surface wind speed developed using ocean satellite crossovers. IFREMER Tech. Rep. DROOS-2000-02, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Gower, J., 1996: Intercalibration of wave and wind data from TOPEX/Poseidon and moored buoys off the west coast of Canada. J. Geophys. Res., 101 , 38173830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M., Demuth H. , and Beale M. , 1996: Neural Network Design. PWS Publishing, 637 pp.

  • Hwang, P., Teague W. , Jacobs G. , and Wang D. , 1998: A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the gulf of Mexico region. J. Geophys. Res., 103 , 1045110468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohler, H., 1988: Essentials of Statistics. Scott, Foresman and Company, 526 pp.

  • Lefèvre, J., Barckicke J. , and Ménard Y. , 1994: A significant wave height dependent function for TOPEX/Poseidon wind speed retrieval. J. Geophys. Res., 99 , 2503525046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaldo, F., and Dobson E. , 1989: On using significant wave height and radar cross section to improve radar altimeter measurements. J. Geophys. Res., 94 , 1269912701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., Li F. K. , and Neumann G. , 1997: The dependence of ocean backscatter at Ku-band on oceanic and atmospheric parameters. IEEE Trans. Geosci. Remote Sens., 35 , 581600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queffeulou, P., Chapron B. , and Bentamy A. , 1999: Comparing Ku band NSCAT scatterometer and ERS-2 altimeter winds. IEEE Trans. Geosci. Remote Sens., 37 , 16621670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterling, T., and Pollack S. , 1996: Introduction to Statistical Processing. Prentice-Hall, 663 pp.

  • Sverdrup, H., and Munk W. , 1947: Wind, sea, and swell: Theory of relations for forecasting. Tech. Rep. 1, H.O. Publ. 601, U.S. Hydrographic Office, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J., and Blanquet S. , 1994: Wind and wave mesoscale variability from in situ and altimeter data. Global Atmos. Ocean Syst., 2 , 221247.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., and Smith D. , 1999: A model function for the ocean normalized radar cross section at 14 ghz derived from NSCAT. J. Geophys. Res., 104 , 1149911514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witter, D., and Chelton D. , 1991: A Geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm development. J. Geophys. Res., 96 , 88538860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1999: On wave dependency of altimeter sea returns—Weak fetch influence on short ocean waves. J. Atmos. Oceanic Technol., 16 , 373378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., 1993: An estimate of the Geosat altimeter wind speed algorithm at high wind speeds. J. Geophys. Res., 98 , 2027520286.

  • Young, I., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19 , 931950.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1720 852 36
PDF Downloads 547 132 14