Efficient Inverse Modeling of Barotropic Ocean Tides

Gary D. Egbert College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Gary D. Egbert in
Current site
Google Scholar
PubMed
Close
and
Svetlana Y. Erofeeva College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Svetlana Y. Erofeeva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A computationally efficient relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described. The GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations (SWEs). To make representer computations efficient, the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference discretization of the second-order wave equation in elevation. Once this matrix is factored representers can be calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents) in the definition of the discretized GI penalty functional, complete generality in the choice of dynamical error covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation constraints. While the dynamical calculations involve elevations alone, depth-averaged currents can be directly assimilated into the tidal model with this approach. The efficient representer calculation forms the basis for the Oregon State University (OSU) Tidal Inversion Software (OTIS). OTIS includes software for generating grids, prior model covariances, and boundary conditions; for time stepping the nonlinear shallow water equations to generate a first guess or prior solution; for preliminary processing of TOPEX/Poseidon altimeter data; for solution of the GI problem; and for computation of posterior error bars. Approximate GI solution methods, based on using a reduced set of representers, allow very large datasets to be inverted. OTIS regional and local GI tidal modeling (with grids containing up to 105 nodes) require only a few hours on a common desktop workstation. Use of OTIS is illustrated by developing a new regional-scale (1/6°) model of tides in the Indonesian Seas.

Corresponding author address: Dr. Gary D. Egbert, College of Oceanic and Atmospheric Sciences, Ocean Admin. Building 104, Oregon State University, Corvallis, OR 97331-5503. Email: egbert@oce.orst.edu

Abstract

A computationally efficient relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described. The GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations (SWEs). To make representer computations efficient, the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference discretization of the second-order wave equation in elevation. Once this matrix is factored representers can be calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents) in the definition of the discretized GI penalty functional, complete generality in the choice of dynamical error covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation constraints. While the dynamical calculations involve elevations alone, depth-averaged currents can be directly assimilated into the tidal model with this approach. The efficient representer calculation forms the basis for the Oregon State University (OSU) Tidal Inversion Software (OTIS). OTIS includes software for generating grids, prior model covariances, and boundary conditions; for time stepping the nonlinear shallow water equations to generate a first guess or prior solution; for preliminary processing of TOPEX/Poseidon altimeter data; for solution of the GI problem; and for computation of posterior error bars. Approximate GI solution methods, based on using a reduced set of representers, allow very large datasets to be inverted. OTIS regional and local GI tidal modeling (with grids containing up to 105 nodes) require only a few hours on a common desktop workstation. Use of OTIS is illustrated by developing a new regional-scale (1/6°) model of tides in the Indonesian Seas.

Corresponding author address: Dr. Gary D. Egbert, College of Oceanic and Atmospheric Sciences, Ocean Admin. Building 104, Oregon State University, Corvallis, OR 97331-5503. Email: egbert@oce.orst.edu

Save
  • Anderson, E., and and Coauthors, 1992: Lapack User's Guide. Society for Industrial and Applied Mathematics, 235 pp.

  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res, 29 , 307338.

  • Bell, T. H., 1975: Topographically induced internal waves in the open ocean. J. Geophys. Res, 80 , 320327.

  • Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Monographs on Mechanics and Applied Mathematics,. Cambridge University Press, 346 pp.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., and McIntosh P. C. , 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr, 12 , 10041018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., Masson D. , and Foreman M. G. G. , 2000: Stratification and mean flow effects on diurnal tidal currents off Vancouver Island. J. Phys. Oceanogr, 30 , 1530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., Egbert G. D. , Worcester P. F. , Cornuelle B. D. , Howe B. M. , and Metzger K. , 1997: A TOPEX/Poseidon global tidal model (TPXO.2) and barotropic tidal currents determined from long-range acoustic transmissions. Progress in Oceanography, Vol. 40, Pergamon, 337–367.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., 1997: Tidal data inversion: Interpolation and inference. Progress in Oceanography, Vol. 40, Pergamon, 81–108.

  • Egbert, G. D., and Bennett A. F. , 1996: Data assimilation methods for ocean tides. Modern Approaches to Data Assimilation in Ocean Modeling, P. Malonotte-Rizzoli, Ed., Elsevier Science, 147–179.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and Ray R. D. , 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 , 775778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and Ray R. D. , 2001: Estimates of M2 tidal energy dissipation from TOPEX Posiedon altimeter data. J. Geophys. Res., 106, 22 475–22 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., Bennett A. F. , and Foreman M. G. G. , 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res, 99 , 2482124852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, W. E., 1972: Deformation of the earth by surface loads. Rev. Geophys. Space Phys, 10 , 761797.

  • Golub, G. H., and Van Loan C. F. , 1989: Matrix Computation. 2d ed. Johns Hopkins University Press, 642 pp.

  • Hatayama, T., Awaji T. , and Akimoto K. , 1996: Tidal currents in the Indonesian Seas and their effect on transports and mixing. J. Geophys. Res, 101 , 1235312373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1972: The effects of solid earth deformation on global ocean tides. Geophys. J. Roy. Astron. Soc, 29 , 389402.

  • Hendershott, M. C., 1977: Numerical models of ocean tides. Marine Modeling, E. Goldberg, Ed., The Sea, Vol. 6, John Wiley and Sons, 47–96.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1995: Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides. Part I: Model description and results. J. Geophys. Res, 100 , 2528325308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kivman, G. A., 1997: Assimilating data into open ocean tidal models. Surv. Geophys, 18 , 619643.

  • Koblinsky, C. J., Ray R. D. , Beckeley B. D. , Wang Y-M. , Tsaoussi L. , Brenner A. , and Willimanson R. , 1999: NASA ocean altimeter Pathfinder Project Report 1. Data processing handbook. NASA/TM-1998-208605, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. L., Montgomery E. T. , Polzin K. L. , St. Laurent L. C. , Schmitt R. W. , and Toole J. M. , 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Provost, C., and Poncet A. , 1978: Finite element method for spectral modeling of tides. Int. J. Numer. Methods Eng, 12 , 853871.

  • Lyard, F. H., 1999: Data assimilation in a wave equation: A variational representer approach for the Grenoble tidal model. J. Comput. Phys, 149 , 131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., Ooe M. , Sato T. , and Segawa J. , 1995: Ocean tide model obtained from TOPEX/Poseidon altimetry data. J. Geophys. Res, 100 , 2531925330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzega, P., and Berge M. , 1994: Ocean tides in the Asian semienclosed seas from TOPEX/Poseidon. J. Geophys. Res, 99 , 2486724881.

  • McIntosh, P. C., and Bennett A. F. , 1984: Open ocean modeling as an inverse problem: M2 tides in Bass Strait. J. Phys. Oceanogr, 14 , 601614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and Wunsch C. , 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res, 45 , 19772010.

  • National Geophysical Data Center, 1992: Worldwide marine geophysical data. GEODAS CD-ROM NOAA 92-MGG-02.

  • Parker, R. L., 1994: Geophysical Inverse Theory. Princeton University Press, 386 pp.

  • Parker, R. L., and Shure L. , 1982: Efficient modeling of the earth's magnetic field with harmonic splines. Geophys. Res. Lett, 9 , 812815.

  • Pingree, R. D., 1983: Spring tides and quadratic friction. Deep-Sea Res, 30 , 929944.

  • Polzin, K. L., Toole J. M. , Ledwell J. R. , and Schmitt R. W. , 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Ocean self-attraction and loading in numerical tidal models. Mar. Geod, 21 , 181192.

  • Ray, R. D., 1999: A global ocean tide model from TOPEX/Poseidon altimetry. NASA Rep. NASA/TM-1999-209478, 58 pp.

  • Ray, R. D., 2001: Inversion of oceanic tidal currents from measured elevations. J. Mar. Syst, 28 , 118.

  • Ray, R. D., and Sanchez B. V. , 1989: Radial deformation of the earth by oceanic tidal loading. NASA Tech. Memo. 1000743, 49 pp.

  • Ray, R. D., and Mitchum G. T. , 1997: Surface manifestation of internal tides in the deep ocean. Progress in Oceanography, Vol. 40, Pergamon, 135–162.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., Eanes R. J. , Egbert G. D. , and Pavlis N. K. , 2001: Error spectrum for the global M2 ocean tide. Geophys. Res. Lett, 28 , 2125.

  • Schwiderski, E. W., 1980: Ocean tides. Part II: A hydrodynamic interpolation model. Mar. Geod, 3 , 219255.

  • Shum, C. K., and and Coauthors, 1997: Accuracy assessment of recent ocean tide models. J. Geophys. Res, 102 , 2517325194.

  • Sjoberg, B., and Stigebrandt A. , 1992: Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res, 39 , 269291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and Sandwell D. T. , 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yosida, K., 1980: Functional Analysis. 6 ed. Springer-Verlag, 500 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15392 3970 382
PDF Downloads 11930 2945 261